首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to study the effect of ATP on the rotational dynamics of spin-labeled myosin heads crosslinked to actin (XLAS1). We have previously shown that ATP induces microsecond rotational motions in activated myofibrils or muscle fibers, but the possibility remained that the motion occurred only in the detached phase of the cross-bridge cycle. The addition of ATP to the crosslinked preparation has been shown to be a model system for active cross-bridges, presumably providing an opportunity to measure the motion in the attached state, without interference from unattached heads. In the absence of ATP, XLAS1 had very little microsecond rotational mobility, yielding a spectrum identical to that observed for uncrosslinked acto-S1. This suggests that all of the labeled S1 forms normal rigor complexes when crosslinked to actin. The addition of 5 mM ATP greatly increased the microsecond rotational mobility of XLAS1, and the effects were reversed upon depletion of ATP. The most plausible explanation for these results is that myosin heads undergo microsecond rotational motion while attached actively to actin during steady state ATPase activity. These results have important implications for the interpretation of spectroscopic data obtained during muscle contraction.  相似文献   

2.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin heads in bundles of skinned muscle fibers, under conditions of rigor, relaxation, and isometric contraction. Experiments were performed on fiber bundles perfused continuously with an ATP-regenerating system. Conditions were identical to those we have used in previous studies of myosin head orientation, except that the fibers were perpendicular to the magnetic field, making the spectra primarily sensitive to rotational motion rather than to the orientational distribution. In rigor, the high intensity of the ST-EPR signal indicates the absence of microsecond rotational motion, showing that heads are all rigidly bound to actin. However, in both relaxation and contraction, considerable microsecond rotational motion is observed, implying that the previously reported orientational disorder under these conditions is dynamic, not static, on the microsecond time scale. The behavior in relaxation is essentially the same as that observed when myosin heads are detached from actin in the absence of ATP (Barnett and Thomas, 1984), corresponding to an effective rotational correlation time of approximately 10 microseconds. Slightly less mobility is observed during contraction. One possible interpretation is that in contraction all heads have the same mobility, corresponding to a correlation time of approximately 25 microseconds. Alternatively, more than one motional population may be present. For example, assuming that the spectrum in contraction is a linear combination of those in relaxation (mobile) and rigor (immobile), we obtained a good fit with a mole fraction of 78-88% of the heads in the mobile state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to measure the microsecond rotational motion of actin-bound myosin heads in spin-labeled myofibrils in the presence of the ATP analogs AMPPNP (5'-adenylylimido-diphosphate) and ATP gamma S (adenosine-5'-O-(3-thiotriphosphate)). AMPPNP and ATP gamma S are believed to trap myosin in two major conformational intermediates of the actomyosin ATPase cycle, respectively known as the weakly bound and strongly bound states. Previous ST-EPR experiments with solutions of acto-S1 have demonstrated that actin-bound myosin heads are rotationally mobile on the microsecond time scale in the presence of ATP gamma S, but not in the presence of AMPPNP. However, it is not clear that results obtained with acto-S1 in solution can be extended to actomyosin constrained within the myofibrillar lattice. Therefore, ST-EPR spectra of spin-labeled myofibrils were analyzed explicitly in terms of the actin-bound component of myosin heads in the presence of AMPPNP and ATP gamma S. The fraction of actin-attached myosin heads was determined biochemically in the spin-labeled myofibrils, using the proteolytic rates actomyosin binding assay. At physiological ionic strength (mu = 165 mM), actin-bound myosin heads were found to be rotationally mobile on the microsecond time scale (tau r = 24 +/- 8 microseconds) in the presence of ATP gamma S, but not AMPPNP. Similar results were obtained at low ionic strength, confirming the acto-S1 solution studies. The microsecond rotational motions of actin-attached myosin heads in the presence of ATP gamma S are similar to those observed for spin-labeled myosin heads during the steady-state cycling of the actomyosin ATPase, both in solution and in an active isometric muscle fiber. These results indicate that weakly bound myosin heads, in the pre-force phase of the ATPase cycle, are rotationally mobile, while strongly bound heads, in the force-generating phase, are rotationally immobile. We propose that force generation involves a transition from a dynamically disordered crossbridge to a rigid and stereospecific one.  相似文献   

4.
The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.  相似文献   

5.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

6.
We have investigated the orientation and rotational mobility of spin-labeled myosin heads in muscle fibers as a function of the sarcomere length in the absence of ATP. An iodoacetamide spin label was used to label selectively two-thirds of the sulfhydryl-1 groups in glycerinated rabbit psoas muscle. Conventional electron paramagnetic resonance experiments were used to determine the orientation distribution of the probes relative to the fiber axis, and saturation transfer experiments were used to detect sub-millisecond rotational motion. When fibers are at sarcomere length 2.3 microns (full overlap), spin-labeled heads have a high degree of orientational order. The probes are in a single, narrow orientation distribution (full width 15 degrees), and they exhibit no detectable sub-millisecond rotational motion. When fibers are stretched (sarcomere length increased), either before or after labeling, disorder and microsecond mobility increase greatly, in proportion to the fraction of myosin heads that are no longer in the overlap zone between the thick and thin filaments. Saturation transfer difference spectra show that a fraction of myosin heads equal to the fraction outside the overlap zone have much more rotational mobility than those in fibers at full overlap, and almost as much as in synthetic myosin filaments. The most likely interpretation is that some of the probes, corresponding approximately to the fraction of heads in the overlap zone, remain oriented and immobile, while the rest are highly disordered (angular spread greater than 90 degrees) and mobile (microsecond rotational motion). Thus, it appears that myosin heads are rigidly immobilized by actin, but they rotate through large angles on the microsecond time-scale when detached from actin, even in the absence of ATP.  相似文献   

7.
Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers   总被引:3,自引:0,他引:3  
Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.  相似文献   

8.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

9.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have measured the microsecond rotational motions of myosin heads in muscle cross-bridges under physiological ionic conditions at 4 degrees C, by detecting the time-resolved phosphorescence of eosin-maleimide covalently attached to heads in skeletal muscle myofibrils. The anisotropy decay of heads in rigor (no ATP) is constant over the time range from 0.5 to 200 microsecond, indicating that they do not undergo rotational motion in this time range. In the presence of 5 mM MgATP, however, heads undergo complex rotational motion with correlation times of about 5 and 40 microsecond. The motion of heads in relaxed myofibrils is restricted out to 1 ms, as indicated by a nonzero value of the residual anisotropy. The anisotropy decay of eosin-labeled myosin, extracted from labeled myofibrils, also exhibits complex decay on the 200-microsecond time scale when assembled into synthetic thick filaments. The correlation times and amplitudes of heads in filaments (under the same ionic conditions as the myofibril experiments) are unaffected by MgATP and very similar to the values for heads in relaxed myofibrils. The larger residual anisotropy and longer correlation times seen in myofibrils are consistent with a restriction of rotational motion in the confines of the myofibril protein lattice. These are the first time-resolved measurements under physiological conditions of the rotational motions of cross-bridges in the microsecond time range.  相似文献   

11.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

12.
The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which have been shown to resolve several conformational states of the myosin ATPase cycle, on the basis of nanosecond rotational motion within the protein. Spectra were acquired in rigor and during the steady-state phases of relaxation and isometric contraction. Spectral components corresponding to specific conformational states and biochemical intermediates were detected and assigned by reference to EPR spectra of trapped kinetic intermediates. In the absence of ATP, all of the myosin heads were rigidly attached to the thin filament, and only a single conformation was detected, in which there was no sub-microsecond probe motion. In relaxation, the EPR spectrum resolved two conformations of the myosin head that are distinct from rigor. These structural states were virtually identical to those observed previously for isolated myosin and were assigned to the populations of the M*.ATP and M**.ADP.Pi states. During isometric contraction, the EPR spectrum resolves the same two conformations observed in relaxation, plus a small fraction (20-30%) of heads in the oriented actin-bound conformation that is observed in rigor. This rigor-like component is a calcium-dependent, actin-bound state that may represent force-generating cross-bridges. As the spin label is located near the nucleotide-binding pocket in a region proposed to be pivotal for large-scale force-generating structural changes in myosin, we propose that the observed spectroscopic changes indicate directly the key steps in energy transduction in the molecular motor of contracting muscle.  相似文献   

14.
The rotational motion of rigidly spin-labeled myosin heads of glycerinated myofibrils as reflected in saturation-transfer EPR spectra behaves to a first approximation as though the heads consist of two populations with different rotational motions. An immobilized fraction has a correlation time (tau 2) of approximately 0.5 ms, comparable to that of spin-labeled subfragment-1 (S1) bound to thin filaments, while a mobile fraction has a tau 2 of 10 microseconds, comparable to that of the heads of purified myosin filaments. The effects of nonhydrolyzable ATP analogues, potassium pyrophosphate (PPi), or adenylyl imidodiphosphate, Ca2+, temperature, or ionic strength on the spectra can be analyzed in terms of the fraction of myosin heads immobilized by attachment to thin filaments, without requiring changes in the motion of either attached or detached heads.  相似文献   

15.
We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers.  相似文献   

16.
Mello RN  Thomas DD 《Biophysical journal》2012,102(5):1088-1096
We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway.  相似文献   

17.
We have used electron paramagnetic resonance (EPR) to determine the effects of ADP on the orientational distribution of nitroxide spin labels attached to myosin heads in skinned rabbit psoas muscle fibers. To maximize the specificity of labeling, we spin-labeled isolated myosin heads (subfragment 1) on a single reactive thiol (SH1) and diffused them into unlabeled muscle fibers. To maximize spectral and orientational resolution, we used perdeuterated spin labels, 2H-MSL and 2H-IASL, eliminating superhyperfine broadening and thus narrowing the line widths. Two different spin labels were used, with different orientation relative to the myosin head, to ensure that the results are not affected by unfavorable probe orientation. In rigor, a very narrow three-line spectrum was observed for both spin labels, indicating a narrow orientational distribution, as reported previously (Thomas & Cooke, 1980). ADP induced very slight changes in the spectrum, corresponding to very slight (but significant) changes in the orientational distribution. These changes were quantified by a digital analysis of the spectra, using a two-step simplex fitting procedure (Fajer et al., 1990). First, the magnetic tensor values and line widths were determined by fitting the spectrum of a randomly oriented sample. Then the spectrum of oriented fibers was fit to a model by assuming a Gaussian distribution of the tilt angle (theta) and twist angle (phi) of the nitroxide principal axes relative to the fiber axis. A single-Gaussian distribution resulted in inadequate fits, but a two-component model gave excellent results. ADP induces a small (less than 5 degrees) rotation of the major components for both spin labels, along with a similarly small increase of disorder about the average positions.  相似文献   

18.
P G Fajer 《Biophysical journal》1994,66(6):2039-2050
The determination of the iodoacetamide spin label orientation in myosin heads (Fajer, 1994) allows us for the first time to determine directly protein orientation from EPR spectra. Computational simulations have been used to determine the sensitivity of EPR to both torsional and tilting motions of myosin heads. For rigor heads (no nucleotide), we can detect 0.2 degree changes in the tilt angle and 4 degrees in the torsion of the head. Sensitivity decreases with increasing head disorder, but even in the presence of +/- 30 degrees disorder as expected for detached heads, 10 degree changes in the center of the orientational distribution can be detected. We have combined these numerical simulations with a Simplex optimization to compare the orientation of intrinsic heads, with the orientation of labeled extrinsic heads that have been infused into unlabeled muscle fibers. The near identity (within 2 degrees) of the orientational distribution in the two instances can be attributed to myosin elasticity taking up the mechanical strain induced by the mismatch of myosin and actin filament periodicity. A similar analysis of the spectra of fibers with ADP bound to myosin revealed a small (approximately 5 degrees-10 degrees) torsional reorientation, without a substantial change of the tilt angle (< 2 degrees).  相似文献   

19.
Previous studies on spin-labeled F-actin (MSL-actin), using saturation transfer electron paramagnetic resonance (ST-EPR), have demonstrated that actin has submillisecond rotational flexibility and that this flexibility is affected by the binding of myosin and its subfragments. This rotational flexibility does not change during the active interaction of myosin heads, actin, and adenosine triphosphate. However, these ST-EPR studies, performed on randomly oriented actin, would not be sensitive to orientational changes on the millisecond time scale or slower. In the present study, we have clarified these results by performing conventional EPR experiments on MSL-actin oriented by flow to detect changes in the orientational distribution. We have determined the orientational distribution of the spin labels relative to the magnetic field (flow direction) by comparing experimental EPR spectra to simulated EPR spectra corresponding to known orientational distributions. Spectra acquired during flow indicate two populations of probes: a highly ordered population and a disordered population. For the ordered population (28% of the total spin concentration), the angle between the actin filament axis and the nitroxide z axis (theta) fits a Gaussian distribution centered at 32.0 +/- 0.9 degrees, with a full width at half maximum of 20.7 +/- 3.9 degrees. The angle between the nitroxide x axis and the projection of the field in the xy plane (phi) is centered at 37.5 +/- 9.2 degrees with a full width of 24.9 +/- 10.7 degrees. This orientational distribution is not significantly changed upon the binding of phalloidin or myosin subfragment 1 (S1), indicating that these proteins do not affect the axial orientation of actin subunits. Spectra of spin-labeled S1 (MSL-S1) bound to actin oriented by flow have about the same orientational distribution as MSL-S1 bound to actin in oriented fibers. Thus, the oriented fraction of flow-oriented actin filaments has nearly the same high degree of alignment as the actin filaments in muscle fibers.  相似文献   

20.
The interaction of actin and spin-labeled heavy meromyosin (MSL-HMM) was studied in the presence and absence of adenosine diphosphate or 5'-adenyl-yl-imidodiphosphate (AMPPNP) to determine the contributions of single and double-headed binding. The extent of single-headed binding to actin was deduced from a comparison of the fraction of immobilized heads (fi) with the fraction of bound molecules (fs) determined by saturation-transfer EPR (ST-EPR) and sedimentation, respectively. The ST-EPR measurements depend on the reduced motion of the spin label rigidly bound to the HMM heads upon the interaction of the latter with actin. During titration of acto-MSL-HMM with nucleotide, we measured changes in fi and fs brought about by dissociation of MSL-HMM from actin. On titration with ADP, fs changed very little, remaining above 0.8, while fi decreased to approximately 0.5 at 10mM ADP, a result consistent with extensive single-headed binding of MSL-HMM to actin. On titration with AMPPNP, single-headed binding was not detected; viz., fi and fs decreased in parallel. It was not necessary to postulate a nucleotide induced state of the bound heads, differing in motional properties from that of rigor heads, to account for the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号