首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have cloned and characterized cDNA copies of larval and adult Drosophila 7SL RNA. The Drosophila 7SL sequence shares 66.3% homology with that of human 7SL RNA. The homology is not evenly distributed along the sequence, but is concentrated in blocks in the central part of the molecule. We have analysed the secondary structure of Drosophila and human 7SL RNA free in solution by digestion with single and double strand specific nucleases. Similar experiments with the 7SL RNA bound to proteins within the signal recognition particle show essentially the same digestion pattern. A model of the secondary structure common to Drosophila and human 7SL RNA is presented.  相似文献   

4.
Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP- dependent reaction during protein translocation is the SRP receptor- mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the SRP receptor for GTP binding and hydrolysis activities. GTP hydrolysis by SRP was not detected, so the maximal GTP hydrolysis rate for SRP was estimated to be < 0.002 mol GTP hydrolyzed x mol of SRP-1 x min-1. The intrinsic GTP hydrolysis activity of the SRP receptor ranged between 0.02 and 0.04 mol GTP hydrolyzed x mol of SRP receptor-1 x min-1. A 40-fold enhancement of GTP hydrolysis activity relative to that observed for the SRP receptor alone was obtained when complexes were formed between SRP and the SRP receptor. GTP hydrolysis activity was inhibited by GDP, but not by ATP. Extended incubation of the SRP or the SRP receptor with GTP resulted in substoichiometric quantities of protein-bound ribonucleotide. SRP-SRP receptor complexes engaged in GTP hydrolysis were found to contain a minimum of one bound guanine ribonucleotide per SRP-SRP receptor complex. We conclude that the GTP hydrolysis activity described here is indicative of one of the GTPase cycles that occur during protein translocation across the endoplasmic reticulum.  相似文献   

5.
Mason N  Ciufo LF  Brown JD 《The EMBO journal》2000,19(15):4164-4174
Signal recognition particle (SRP) targets proteins for co-translational insertion through or into the endoplasmic reticulum membrane. Mammalian SRP slows nascent chain elongation by the ribosome during targeting in vitro. This 'elongation arrest' activity requires the SRP9/14 subunit of the particle and interactions of the C-terminus of SRP14. We have purified SRP from Saccharomyces cerevisiae and demonstrated that it too has elongation arrest activity. A yeast SRP containing Srp14p truncated at its C-terminus (delta C29) did not maintain elongation arrest, was substantially deficient in promoting translocation and interfered with targeting by wild-type SRP. In vivo, this mutation conferred a constitutive defect in the coupling of protein translation and translocation and temperature-sensitive growth, but only a slight defect in protein translocation. In combination, these data indicate that the primary defect in SRP delta C29 is in elongation arrest, and that this is a physiologically important and conserved function of eukaryotic SRP.  相似文献   

6.
Bui N  Strub K 《Biological chemistry》1999,380(2):135-145
The signal recognition particle (SRP), a ubiquitous cytoplasmic ribonucleoprotein particle, plays an essential role in promoting co-translational translocation of proteins into the endoplasmic reticulum. Here, we summarise recent progress made in the understanding of two essential SRP functions: the signal recognition function, which ensures the specificity, and the elongation arrest function, which increases the efficiency of translocation. Our discussion is based on functional data as well as on atomic structure information, both of which also support the notion that SRP is a very ancient particle closely related to ribosomes. Based on the significant increase of knowledge that has been accumulating on the structure of elongation factors and on their interactions with the ribosome, we speculate about a possible mechanism of the elongation arrest function.  相似文献   

7.
Functional dissection of the signal recognition particle   总被引:10,自引:0,他引:10  
  相似文献   

8.
9.
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that associates with ribosomes to mediate the targeting of membrane and secretory proteins to biological membranes. In higher eukaryotes, SRP biogenesis involves the sequential binding of SRP19 and SRP54 proteins to the S domain of 7S RNA. The recently determined crystal structures of SRP19 in complex with the S domain, and that of the ternary complex of SRP19, the S domain and the M domain of SRP54, provide insight into the molecular basis of S-domain assembly and SRP function.  相似文献   

10.
Disassembly and reconstitution of signal recognition particle   总被引:40,自引:0,他引:40  
P Walter  G Blobel 《Cell》1983,34(2):525-533
Signal recognition particle (SRP) is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of small cytoplasmic 7SL-RNA. The particle was previously shown to function in protein translocation across, and protein integration into, the endoplasmic reticulum membrane. A rapid procedure was developed to disassemble SRP into native protein and RNA components. The method utilizes unfolding of SRP with EDTA and dissociation on polycationic matrixes. SRP proteins prepared this way sediment below 7S and are inactive in activity assays. When recombined with 7SL-RNA in the presence of magnesium, the proteins are shown to reassociate stoichiometrically with 7SL-RNA to form fully active 11S SRP.  相似文献   

11.
It is becoming increasingly clear that similarities exist in the manner in which extracytoplasmic proteins are targeted to complexes responsible for translocating these proteins across membranes in each of the three domains of life. In Eukarya and Bacteria, the signal recognition particle (SRP) directs nascent polypeptides to membrane-embedded translocation sites. In Archaea, the SRP protein targeting pathway apparently represents an intermediate between the bacterial and eukaryal systems. Understanding the archaeal SRP pathway could therefore reveal universal aspects of targeting not detected in current comparisons of the eukaryal and bacterial systems while possibly identifying aspects of the process either not previously reported or unique to Archaea.  相似文献   

12.
13.
Maity TS  Leonard CW  Rose MA  Fried HM  Weeks KM 《Biochemistry》2006,45(50):14955-14964
Many ribonucleoprotein complexes assemble stepwise in distinct cellular compartments, a process that usually involves bidirectional transport of both RNA and proteins between the nucleus and cytoplasm. The biological rationale for such complex transport steps in RNP assembly is obscure. One important example is the eukaryotic signal recognition particle (SRP), a cytoplasmic RNP consisting of one RNA and six proteins. Prior in vivo studies support an "SRP54-late" assembly model in which all SRP proteins, except SRP54, are imported from the cytoplasm to the nucleus to bind SRP RNA. This partially assembled complex is then exported to the cytoplasm where SRP54 binds and forms the SRP holocomplex. Here we show that native SRP assembly requires segregated and ordered binding by its protein components. A native ternary complex forms in vitro when SRP19 binds the SRP RNA prior to binding by SRP54, which approximates the eukaryotic cellular pathway. In contrast, the presence of SRP54 disrupts native assembly of SRP19, such that two RNA-binding loops in SRP19 misfold. These results imply that SRP54 must be sequestered during early SRP assembly steps, as apparently occurs in vivo, for proper assembly of the SRP to occur. Our findings emphasize that spatial compartmentalization provides an additional level of regulation that prevents competition among components and can function to promote native assembly of the eukaryotic SRP.  相似文献   

14.
The signal recognition particle (SRP) is a ubiquitous ribonucleoprotein particle involved in the co-translational targeting of proteins to membranes. Crystal structures are now available for three protein-RNA subcomplexes from the SRP, which give insights into fundamental aspects of protein-RNA recognition, the assembly of stable ribonucleoprotein particles and the mechanism of action of the SRP.  相似文献   

15.
Shan SO  Walter P 《FEBS letters》2005,579(4):921-926
The signal recognition particle (SRP) mediates the co-translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the T. aquaticus SRP.SR complex show that the two GTPases associate via an unusually extensive and highly cooperative interaction surface, and form a composite active site at the interface. GTPase activation proceeds through a unique mechanism, stimulated by both interactions between the twinned GTP molecules across the dimer interface and by conformational rearrangements that position catalytic residues in each active site with respect to the bound substrates. Distinct classes of mutations have been isolated that inhibit specific stages during SRP-SR complex formation and activation, suggesting discrete conformational stages during formation of the active SRP.SR complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.  相似文献   

16.
Schwartz T  Blobel G 《Cell》2003,112(6):793-803
Protein translocation across and insertion into membranes is a process essential to all life forms. In higher eukaryotes, this process is initiated by targeting the translating ribosome to the endoplasmic reticulum via the signal recognition particle (SRP) and its membrane-associated heterodimeric receptor (SR). This targeting step is regulated by three G proteins, SRP54, SR alpha, and SR beta, which act in concert. Little is known about the regulatory role of SR beta. Here, we present the 1.7 A crystal structure of the SR beta-GTP subunit in complex with the interaction domain of SR alpha. Strikingly, the binding interface overlaps largely with the switch 1 region of SR beta. This finding, together with additional biochemical data, shows that the eukaryotic SR is a conditional and not an obligate heterodimer. The results suggest that the GTP/GDP switch cycle of SR beta functions as a regulatory switch for the receptor dimerization. We discuss the implications for the translocation pathway.  相似文献   

17.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

18.
SRPDB (signal recognition particle database)   总被引:6,自引:1,他引:5       下载免费PDF全文
The signal recognition particle database (SRPDB) is maintained at the University of Texas Health Science Center at Tyler, Texas, and organizes SRP-related information about SRP RNA, SRP proteins and the SRP receptor. SRPDB is accessible on the WWW at the URL http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html . A mirror site of the SRPDB is located in Europe at the University of Göteborg, Sweden (http://www.medkem.gu.se/dbs/SRPDB/SRPDB.html ). This release of SRPDB adds 10 new SRP RNA sequences (a total of 117 SRP RNAs), four protein SRP19 sequences (a total of 15), seven new SRP54 (ffh) sequences (a total of 52), and eight sequences of the SRP receptor alpha subunit (FtsY) (total of 36). Sequences are arranged in alphabetical and phylogenetic order and alignments are provided which highlight base paired and conserved regions. SPRDB also provides motifs to find new sequences, a brief introduction to SRP function in protein secretion, numerous SRP RNA secondary structure diagrams, 3-D SRP RNA models, and recently obtained crystal structure PDB coordinates of the human SRP54m domain.  相似文献   

19.
The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.  相似文献   

20.
Protein translocation begins with the efficient targeting of secreted and membrane proteins to complexes embedded within the membrane. In Eukarya and Bacteria, this is achieved through the interaction of the signal recognition particle (SRP) with the nascent polypeptide chain. In Archaea, homologs of eukaryal and bacterial SRP-mediated translocation pathway components have been identified. Biochemical analysis has revealed that although the archaeal system incorporates various facets of the eukaryal and bacterial targeting systems, numerous aspects of the archaeal system are unique to this domain of life. Moreover, it is becoming increasingly clear that elucidation of the archaeal SRP pathway will provide answers to basic questions about protein targeting that cannot be obtained from examination of eukaryal or bacterial models. In this review, recent data regarding the molecular composition, functional behavior and evolutionary significance of the archaeal signal recognition particle pathway are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号