首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
生物合成硒蛋白机制的研究进展   总被引:8,自引:0,他引:8  
作为第 2 1种氨基酸 ,硒代半胱氨酸在翻译阶段由核糖体介导 ,在mRNA编码区的UGA密码子处参入多肽链。研究表明硒代半胱氨酸的参入需要一个顺式作用元件SECIS和 4个基因产物 :SelA、SelB、SelC、SelD。原核生物和真核生物的SECIS在mRNA中的位置和结构特征差异显著。在利用Escherichiacoli硒代半胱氨酸的参入机制合成硒蛋白方面 ,研究人员进行了有益的探索。  相似文献   

4.
The UGA codon, which usually acts as a stop codon, can also direct the incorporation into a protein of the amino acid selenocysteine. This UGA decoding process requires a cis-acting mRNA element called the selenocysteine insertion sequence (SECIS), which can form a stem-loop structure. In Escherichia coli, selenocysteine incorporation requires only the 17-nucleotide-long upper stem-loop structure of the fdhF SECIS. This structure carries a bulged nucleotide U at position 17. Here we asked whether the single bulged nucleotide located in the upper stem-loop structure of the E. coli fdhF SECIS is involved in the in vivo interaction with SelB. We used a genetic approach, generating and characterizing selB mutations that suppress mutations of the bulged nucleotide in the SECIS. All the selB suppressor mutations isolated were clustered in a region corresponding to 28 amino acids in the SelB C-terminal subdomain 4b. These selB suppressor mutations were also found to suppress mutations in either the loop or the upper stem of the E. coli SECIS. Thus, the E. coli SECIS upper stem-loop structure can be considered a "single suppressible unit," suggesting that there is some flexibility to the nature of the interaction between this element and SelB.  相似文献   

5.
The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.  相似文献   

6.
J Heider  C Baron    A Bck 《The EMBO journal》1992,11(10):3759-3766
Incorporation of selenocysteine into proteins is directed by specifically 'programmed' UGA codons. The determinants for recognition of the selenocysteine codon have been investigated by analysing the effect of mutations in fdhF, the gene for formate dehydrogenase H of Escherichia coli, on selenocysteine incorporation. It was found that selenocysteine was also encoded when the UGA codon was replaced by UAA and UAG, provided a proper codon-anticodon interaction was possible with tRNA(Sec). This indicates that none of the three termination codons can function as efficient translational stop signals in that particular mRNA position. The discrimination of the selenocysteine 'sense' codon from a regular stop codon has previously been shown to be dependent on an RNA secondary structure immediately 3' of the UGA codon in the fdhF mRNA. It is demonstrated here that the correct folding of this structure as well as the existence of primary sequence elements located within the loop portion at an appropriate distance to the UGA codon are absolutely required. A recognition sequence can be defined which mediates specific translation of a particular codon inside an mRNA with selenocysteine and a model is proposed in which translation factor SELB interacts with this recognition sequence, thus forming a quaternary complex at the mRNA together with GTP and selenocysteyl-tRNA(Sec).  相似文献   

7.
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to consist of at least 40 nucleotides following the UGA codon. Here we determined the nature of the minimal SECIS required for the in vivo UGA-directed selenocysteine incorporation in E.coli . Our study is based on extensive mutational analysis of the fdhF SECIS DNA located in a lac' Z fusion. We found that the whole stem-loop RNA structure of the E.coli fdhF SECIS previously described is not required for the UGA-directed selenocysteine incorporation in vivo . Rather, only its upper stem-loop structure of 17 nucleotides is necessary on the condition that it is located in a proper distance (11 nucleotides) from the UGA codon. Based on these observations, we present a new model for the minimal E.coli SECIS.  相似文献   

8.
Decoding of UGA selenocysteine codons in eubacteria is mediated by the specialized elongation factor SelB, which conveys the charged tRNA(Sec) to the A site of the ribosome, through binding to the SECIS mRNA hairpin. In an attempt to isolate the eukaryotic homolog of SelB, a database search in this work identified a mouse expressed sequence tag containing the complete cDNA encoding a novel protein of 583 amino acids, which we called mSelB. Several lines of evidence enabled us to establish that mSelB is the bona fide mammalian elongation factor for selenoprotein translation: it binds GTP, recognizes the Sec-tRNA(Sec) in vitro and in vivo, and is required for efficient selenoprotein translation in vivo. In contrast to the eubacterial SelB, the recombinant mSelB alone is unable to bind specifically the eukaryotic SECIS RNA hairpin. However, complementation with HeLa cell extracts led to the formation of a SECIS-dependent complex containing mSelB and at least another factor. Therefore, the role carried out by a single elongation factor in eubacterial selenoprotein translation is devoted to two or more specialized proteins in eukaryotes.  相似文献   

9.
The translation of mammalian selenoprotein mRNAs requires the 3' untranslated region that contains a selenocysteine insertion sequence (SECIS) element necessary for decoding an in-frame UGA codon as selenocysteine (Sec). Selenoprotein biosynthesis is inefficient, which may be due to competition between Sec insertion and termination at the UGA/Sec codon. We analyzed the polysome distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, a member of the glutathione peroxidase family of selenoproteins, in rat hepatoma cell and mouse liver extracts. In linear sucrose gradients, the sedimentation velocity of PHGPx mRNA was impeded compared to CuZn superoxide dismutase (SOD) mRNA, which has a coding region of similar size. Selenium supplementation increased the loading of ribosomes onto PHGPx mRNA, but not CuZn SOD mRNA. To determine whether the slow sedimentation velocity of PHGPx mRNA is due to a block in elongation, we analyzed the polysome distribution of wild-type and mutant mRNAs translated in vitro. Mutation of the UGA/Sec codon to UGU/cysteine increased ribosome loading and protein synthesis. When UGA/Sec was replaced with UAA or when the SECIS element core was deleted, the distribution of the mutant mRNAs was similar to the wild-type mRNA. Addition of SECIS-binding protein SBP2, which is essential for Sec insertion, increased ribosome loading and translation of wild-type PHGPx mRNA, but had no effect on the mutant mRNAs. These results suggest that elongation is impeded at UGA/Sec, and that selenium and SBP2 alleviate this block by promoting Sec incorporation instead of termination.  相似文献   

10.
Several gene products are involved in co-translational insertion of selenocysteine by the tRNA(Sec). In addition, a stem-loop structure in the mRNAs coding for selenoproteins is essential to mediate the selection of the proper selenocysteine UGA codon. Interestingly, in eukaryotic selenoprotein mRNAs, this stem-loop structure, the selenocysteine insertion sequence (SECIS) element, resides in the 3'-untranslated region, far downstream of the UGA codon. In view of unravelling the underlying complex mechanism, we have attempted to detect RNA-binding proteins with specificity for the SECIS element. Using mobility shift assays, we could show that a protein, present in different types of mammalian cell extracts, possesses the capacity of binding the SECIS element of the selenoprotein glutathione peroxidase (GPx) mRNA. We have termed this protein SBP, for Secis Binding Protein. Competition experiments attested that the binding is highly specific and UV cross-linking indicated that the protein has an apparent molecular weight in the range of 60-65 kDa. Finally, some data suggest that the SECIS elements in the mRNAs of GPx and another selenoprotein, type I iodothyronine 5' deiodinase, recognize the same SBP protein. This constitutes the first report of the existence of a 3' UTR binding protein possibly involved in the eukaryotic selenocysteine insertion mechanism.  相似文献   

11.
Selenocysteine (Sec) is the "21st" amino acid and is genetically encoded by an unusual incorporation system. The stop codon UGA becomes a Sec codon when the selenocysteine insertion sequence (SECIS) exists downstream of UGA. Sec incorporation requires a specific elongation factor, SelB, which recognizes tRNA(Sec) via use of an EF-Tu-like domain and the SECIS mRNA hairpin via use of a C-terminal domain (SelB-C). SelB functions in multiple translational steps: binding to SECIS mRNA and tRNA(Sec), delivery of tRNA(Sec) onto an A site, GTP hydrolysis, and release from tRNA and mRNA. However, this dynamic mechanism remains to be revealed. Here, we report a large domain rearrangement in the structure of SelB-C complexed with RNA. Surprisingly, the interdomain region forms new interactions with the phosphate backbone of a neighboring RNA, distinct from SECIS RNA binding. This SelB-RNA interaction is sequence independent, possibly reflecting SelB-tRNA/-rRNA recognitions. Based on these data, the dynamic SelB-ribosome-mRNA-tRNA interactions will be discussed.  相似文献   

12.
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.  相似文献   

13.
P Tormay  R Wilting  J Heider    A Bck 《Journal of bacteriology》1994,176(5):1268-1274
The genes (selC) coding for the selenocysteine-inserting tRNA species (tRNA(Sec)) from Clostridium thermoaceticum and Desulfomicrobium baculatum were cloned and sequenced. Although they differ in numerous positions from the sequence of the Escherichia coli selC gene, they were able to complement the selC lesion of an E. coli mutant and to promote selenoprotein formation in the heterologous host. The tRNA(Sec) species from both organisms possess all of the unique primary, secondary, and tertiary structural features exhibited by E. coli tRNA(Sec) (C. Baron, E. Westhof, A. Böck, and R. Giegé, J. Mol. Biol. 231:274-292, 1993). The structural and functional properties of the tRNA(Sec) species from prokaryotes analyzed thus far support the notion that tRNA(Sec) may be an evolutionarily conserved structure whose function in the primordial genetic code was to decode UGA with selenocysteine.  相似文献   

14.
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3'-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins.  相似文献   

15.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

16.
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.  相似文献   

17.
The SelB protein of Escherichia coli is a special elongation factor required for the cotranslational incorporation of the uncommon amino acid selenocysteine into proteins such as formiate dehydrogenases. To do this, SelB binds simultaneously to selenocysteyl-tRNA(Sec) and to an RNA hairpin structure in the mRNA of formiate dehydrogenases located directly 3' of the selenocysteine opal (UGA) codon. The protein is also thought to contain binding sites allowing its interaction with ribosomal proteins and/or rRNA. SelB thus includes specific binding sites for a variety of different RNA molecules. We used an in vitro selection approach with a pool completely randomized at 40 nt to isolate new high-affinity SelB-binding RNA motifs. Our main objective was to investigate which of the various RNA-binding domains in SelB would turn out to be prime targets for aptamer interaction. The resulting sequences were compared with those from a previous SELEX experiment using a degenerate pool of the wild-type formiate dehydrogenase H (fdhF) hairpin sequence (Klug SJ et al., 1997, Proc. Natl. Acad. Sci. USA 94:6676-6681). In four selection cycles an enriched pool of tight SelB-binding aptamers was obtained; sequencing revealed that all aptamers were different in their primary sequence and most bore no recognizable consensus to known RNA motifs. Domain mapping for SelB-binding aptamers showed that despite the different RNA-binding sites in the protein, the vast majority of aptamers bound to the ultimate C-terminus of SelB, the domain responsible for mRNA hairpin binding.  相似文献   

18.
In mammals, most of the selenium contained in their body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is normally recognized as a translational stop signal, it is intriguing how cells recognize and distinguish the UGA Sec codon from the UGA stop codon. In eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated Sec insertion sequence (SECIS) located in the 3'-untranslated regions is required for recognition of UGA as a Sec codon. Although some proteins (SBPs) have been reported to bind to SECIS, it is not clear how the SECIS element can mediate Sec insertion at UGA. Eukaryotic Sec-tRNA(Sec) is not recognized by elongation factor EF-1alpha, but is recognized specifically by a Sec-tRNA(Sec) protecting factor, SePF, in bovine liver extracts. In this study, we provide evidence that SePF is distinct from SBP by chromatography. Upon UV irradiation, the SECIS RNA was cross-linked to a 47.5 kDa protein, a likely candidate of SBP, that is contained in the complex with a molecular mass of 150 kDa. These results suggest that SBP and SePF play different roles for the Sec incorporation. To our knowledge, this is the first demonstration that SBP is discriminated from the factor which directly recognizes Sec-tRNA(Sec), providing a novel clue to the mechanism of selenocysteine decoding in eukaryotes.  相似文献   

19.
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable P(BAD) promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a P(BAD)-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.  相似文献   

20.
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号