首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. In the present study, we characterize the time course of spinal FOS protein expression after transient noninjurious (6-min) or injurious (12-min) spinal ischemia induced by inflation of a balloon catheter placed into the descending thoracic aorta. In addition, this work examined the effects of spinal hypothermia on FOS expression induced either by ischemia or by potassium-evoked depolarization (intrathecal KCl).2. Short-lasting (6-min) spinal ischemia evoked a transient FOS protein expression. The peak expression was seen 2 hr after reperfusion in all laminar levels in lumbosacral segments. At 4 hr of reperfusion, more selective FOS expression in spinal interneurons localized in the central part of laminae V–VII was seen. At 24 hr no significant increase in FOS protein was detected.3. After 12 min of ischemia and 2 hr of reflow, nonspecific FOS expression was seen in both white and gray matter, predominantly in nonneuronal elements. Intrathecal KCl-induced FOS expression in spinal neurons in the dorsal horn and in the intermediate zone. Spinal hypothermia (27°C) significantly suppressed FOS expression after 6 or 12 min of ischemia but not after KCl-evoked depolarization.4. Data from the present study show that an injurious (but not noninjurious) interval of spinal ischemia evokes spinal FOS protein expression in glial cells 2 hr after reflow. The lack of neuronal FOS expression corresponds with extensive neuronal degeneration seen in this region 24 hr after reflow. Noninjurious (6-min) ischemia induced a transient, but typically neuronal FOS expression. The significant blocking effect of hypothermia (27°C) on the FOS induction after ischemia but not after potassium-evoked depolarization also suggests that simple neuronal depolarization is a key trigger in FOS induction.  相似文献   

2.
Stress Protein Inductions After Brain Ischemia   总被引:7,自引:0,他引:7  
  相似文献   

3.
1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia. The first two authors contributed equally  相似文献   

4.
Heat shock proteins (HSPs) induced by brain ischemia may play an important role in neuroprotection from neuronal degeneration. In this study, we examined the cerebral blood flow (CBF) threshold to produce regional differences in HSP72 induction after transient forebrain ischemia in spontaneously hypertensive rats (SHRs). Female SHRs were subjected to 20 min of cerebral ischemia induced by bilateral carotid artery occlusion. The CBF was measured by laser Doppler flowmetry. At forty-eight hours after cerebral ischemia and reperfusion, the rats were decapitated and the brains were removed. Specific areas (hippocampal CA1, CA2-3, dentate gyrus, dorsolateral and ventromedial striatum, and parietal cortex) were thereafter dissected from the brain. The amounts of HSP72 in these samples were determined using Western blot analysis. In the hippocampus, HSP72 was induced when the CBF decreased to less than 18–25% of the resting level. The mean values of HSP72 produced in the CA1 area, CA2-3 area, and the dentate gyrus following ischemia and reperfusion treatment were 4.44 ± 1.43 (±SD) ng/g prtein, 3.51 ± 0.72 ng/g protein and 3.77 ± 1.05 ng/g protein, respectively. In the parietal cortex, the amount of HSP72 induction was less pronounced (2.55 ± 0.40 ng/g protein), while HSP72 was hardly detected at all in the striatum, even under conditions of very severe CBF reduction and reperfusion. We demonstrated the existence of both a CBF threshold (i.e., approximately 20% of the resting level) for HSP72 induction and regional heterogeneity for the induction of HSP72 protein.  相似文献   

5.
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.  相似文献   

6.
The purpose of this study was to evaluate the neuroprotective effects of intranasally delivered recombinant human neuronal erythropoietin (Neuro-EPO) on brain injury induced by unilateral permanent ischemia in the Mongolian gerbil. Expression of EPO receptor (EPOR) and neuroglobin (Ngb) over 5 weeks after intranasal treatment with Neuro-EPO was determined using immunohistochemistry. Mortality of Neuro-EPO-treated gerbils decreased after surgery, and the sensory and motor function was significantly improved. Histopathological mapping showed that Neuro-EPO significantly reduced delayed neuronal death in the brain. Expression of Ngb was upregulated in the cerebral cortex at most time points (expect for 10 min and 48 hr) and in the hippocampus at 10 min and from 48 hr to 5 weeks, whereas EPOR was almost downregulated or unchanged in the brain (expect for 48 hr). The 10 min and 48 hr seemed to be two time points for the brain to switch the expression of both Ngb and EPOR to early and late recovery phase, respectively. In addition, there were two phases, 10 min to 1 hr and 24 hr to 72 hr, respectively, closing to the “golden hour” of about 60 min and the “silver day” of 1 to 3 days, for the brain to recover from stroke onset with intranasal Neuro-EPO treatment. Therefore, the results suggest that the intranasal administration of Neuro-EPO is effective in the treatment of acute brain ischemia. The different expression patterns of Ngb and EPOR is probably due to ischemic tolerance in the cerebral cortex and ischemic sensitivity in the hippocampus.  相似文献   

7.

Background

Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat.

Methodology/Principal Findings

Our studies revealed that NADPH oxidase activity and superoxide (O2 ) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O2 production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated “in situ” O2 production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7–9 d post reperfusion as compared to vehicle-treated animals.

Conclusions/Significance

The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.  相似文献   

8.
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.  相似文献   

9.
1. Ubiquitin immunohistochemistry was used for investigation of time dependent changes of ubiquitin in the nerve cells reacting to ischemic/reperfusion damage. In the rabbit spinal cord ischemia model a period of 30 min ischemia followed by 24 and 72 h of reperfusion caused neuronal degeneration selectively in the ventral horn motor neurons as well as interneurons of the intermediate zone.2. Ubiquitin aggregates were accumulated in the neurons of lamina IX and the neurons of intermediate zone destined to die 72 h after 30 min of the spinal cord ischemia.3. The activation of ubiquitin hydrolytic system is related to a defective homeostasis and could trigger different degenerative processes. Having in mind this, we used EGb 761 to rescue the motor neurons and interneurons against ischemia/reperfusion damage. Our results show that after 30 min of ischemia and 24 or 72 h of reperfusion with EGb 761 pre-treatment for 7 days the vulnerable neurons in the intermediate zone and lamina IX exhibit marked elevation of ubiquitin–positive granules in the cytoplasm, dendrites and nuclei. Abnormal protein aggregates have not been observed in these cells.4. The rabbits were completely paraplegic after 30 min of ischemia and 24 or 72 h of reperfusion. However, after 7 days EGb 761 pre-treatment, 30 min of ischemia and 24 or 72 h of reperfusion the animals did not show paraplegia.5. Evaluated ubiquitin–positive neurons of the L5–L6 segments showed significant decrease in number and significant increase of density after 30 min of ischemia followed by 24 h and mainly 72 h of reperfusion. Ubiquitin immunohistochemistry confirmed the protective effect of EGb 761 against ischemia/reperfusion damage in the rabbit spinal cord.  相似文献   

10.
11.
目的:研究脑缺血/再灌注(I/R)损伤后瘦素受体(OB-R)表达的变化情况.方法:雄性成年Wistar大鼠20只,随机分成4组:假手术24 h、72 h对照组及I/R 24 h、72 h实验组.线栓法制备大鼠局灶性脑皮质I/R损伤模型,在脑I/R后相应时间点分别处死大鼠,采用免疫组织化学、免疫电镜方法观察大脑皮质OB-R的表达,在光镜及电镜下观察神经元损伤改变.结果:左顶叶皮质锥体细胞、血管内皮、脉络丛发现有OB-R阳性表达;与假手术对照组相比,I/R 24 h(I/R早期)锥体细胞OB-R免疫反应阳性细胞表达减少(P<0.05),I/R 72 h(I/R晚期)锥体细胞OB-R免疫反应阳性细胞减少更明显(P<0.001);光镜及电镜对缺血中心区神经元的观察均显示I/R晚期的神经元损伤明显重于早期.结论:脑I/R损伤后早期神经元损害和迟发性神经元损害均伴随有OB-R的表达减少,且迟发性神经元损害表达减少更明显,因此在脑梗塞的防治中有必要对瘦素及其OB-R的作用进一步研究.  相似文献   

12.
Previous work has suggested that a major contributor to neuronal cell death is the aberrant induction of the cell cycle process, as indicated by an up-regulation of cyclin D. In order to examine the temporal and spatial relationship of cyclin D in a model of acute neurodegeneration, the hippocampal toxicant, trimethyltin (TMT; 2.0 mg/kg), was administered to 21-day old CD−1 male mice and the level and cellular localization of cyclin D1 examined. Within 24 h following TMT, dentate granule cells of the hippocampus showed evidence of neuronal necrosis resulting in severe cell loss over a 3-day period. The pyramidal cell layer was spared with only sparse punctate neuronal necrosis. Microglia response was seen at 72 h with ameboid microglia present in the dentate and ramified microglia present in the pyramidal cell layer, contributing to the elevation seen in TNF-alpha mRNA levels. A transient elevation was seen in mRNA levels for cyclin D1 over 48–72 h post-TMT. Immunohistochemistry demonstrated a transient increase in staining for cyclin D1 in CA1 pyramidal neurons as early as 24 h. Punctate staining occurred in neurons throughout the dentate at 48 h. BrdU positive cells were present along the inner blades of the dentate in control animals. Following TMT exposure, an increase was seen in both the number of neurons stained and a diffusion of the staining pattern into the full dentate region. Thus, in TMT-induced neurodegeneration, cyclin D1 is not expressed in the vulnerable neurons but rather in neurons spared from degeneration. This expression pattern appears to not be linked to an increase in the cellular processes for proliferation as the majority of BrdU positive cells were present in the region of neuronal damage.  相似文献   

13.
本文旨在观察急性脑缺血对神经元沉默信息调节因子2相关酶类3(silent mating type information regulator 2 homolog 3,Sirt3)蛋白表达水平的影响,并阐明Sirt3在急性脑缺血中的病理意义.建立小鼠大脑中动脉栓塞(middle cerebral artery occlu...  相似文献   

14.
目的:通过大蒜素预处理,观察全脑缺血再灌注大鼠海马区ICAM-1 的表达,从而探讨大蒜素的脑保护机制。方法:雄性 Wistar 大鼠30 只,随机分为5 组:假手术组、缺血再灌注组、缺血再灌注+ 大蒜素10、20、30 mg/kg 组。采用四血管闭塞法制备大 鼠全脑缺血再灌注模型,于再灌注24 h 取出海马,硫堇染色观察海马组织的形态学改变,免疫组织化学染色测定海马CA1 区 ICAM-1 免疫反应阳性细胞面积和积分光密度值。结果:通过给予大鼠全脑缺血8 min 再灌注24 h处理,海马CA1 区组织形态学 改变显著,神经元密度明显降低;ICAM-1的表达显著增加。静脉给予大蒜素可使缺血再灌注海马组织形态学改变明显改善,存活 神经元数目增加,ICAM-1 表达显著较少。结论:大蒜素可以通过减少ICAM-1 的表达抑制全脑缺血再灌注后的炎症损失从而发 挥脑保护作用。  相似文献   

15.
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a “physiological” HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.  相似文献   

16.
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.  相似文献   

17.
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.  相似文献   

18.
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.  相似文献   

19.
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.  相似文献   

20.
DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia–reperfusion (I–R), NeuN-positive (+) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)+ cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号