首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Event-related synchronization (ERS) and desynchronization (ERD) in delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma were measured in 20 healthy right-handed subjects in response to IAPS stimuli with low, moderate, and high arousal reactions. The 62-channel EEG was simultaneously recorded while subjects viewed sequentially presented pictures and subjectively rated them after each presentation. The results show that emotionally loaded stimuli induced higher ERS in the delta, theta1, theta2, beta1, beta3, and gamma bands along with combined ERD and ERS effects in alpha2 band. As to hemispheric asymmetries, the effects of emotional arousal were restricted not only to right parietal (theta1 and theta2 ERS, alpha2 ERD) but also to left frontal (theta2 ERS) regions. In terms of affective chronometry, lower theta was the first to catch the affective salience of incoming stimuli (time window 0-600 ms after the stimulus input). For theta2, alpha2, and gamma bands this process was delayed to 600-1000 ms.  相似文献   

2.
Postpartum EEG spectral and coherence characteristics were estimated in mothers with or without postpartum depressions. In mothers without affective disorders the power of oscillations in the delta, theta, and alpha 1 frequency bands was increased as compared to controls. Intrahemispheric EEG coherence between the left frontal and adjacent derivations in the delta and theta bands and interhemispheric coherence in the central areas was increased and decreased over the remaining cortical surface. These changes led to a significant decrease in EEG asymmetry. It is suggested that during normal postpartum the influence of the limbicodiencephalic and lower brainstem structures on the cortex is augmented and a certain kind of dominanta is formed. In mothers with postpartum depressions the EEG alpha-band power was lower than in the control and normal groups, coherence changes in the delta and theta bands diminished the EEG asymmetry. The insufficiency of limbicodiencephalic influence and impairment of adaptive brainstem reactions are suggested to be responsible for problems in the formation of maternal dominanta, which results in the development of postpartum depressions.  相似文献   

3.
Summary A qualitative and quantitative analysis was performed on the EEG background activity in 62 Danish girls and women with Turner's syndrome (30 with karyotype 45,X and 32 with other karyotypes) whose ages ranged from 6 to 47 years (87% were aged 15 years or more) and age-matched controls. The pooled data and a case-control study showed characteristic features in Turner subjects, including: (1) more rapid frequency, larger amplitude and lower amount of alpha waves, (2) higher amount of theta waves, (3) larger amplitude and higher amount of delta waves and (4) larger amplitude and higher amount of beta waves than in controls. These findings in Turner subjects were more pronounced in the left hemisphere, and more typical, except for the amplitude in alpha waves, in Turner subjects with 45,X than in those with other karyotypes. The effects of advancing age on the EEG background activity observed in controls — including more rapid frequency, decreased amplitude and amount of alpha waves, increased amount of theta and delta waves, and increased amount of beta waves, particularly after 35 years of age — were found in some Turner subjects. Hemispheric differences with higher activity (i.e. more rapid frequency, larger amplitude and higher amount of alpha waves, particularly at Fp1 and F3, and, inversely, lower amount of theta or delta waves) at P3, T3, T5 and O2 than at the opposite side were found in many Turner subjects. However, these findings were not specific for Turner subiects, since the same hemispheric differences were also observed much more markedly in controls. These topographic distributions with hemispheric differences did not provide evidence for hypofunction in the temporo-parieto-occipital tertiary area of the right hemisphere in Turner subjects, though this had been expected on the basis of neuropsychological examinations. Our findings, including transiently appearing brain hypofunction at the parietal, temporal and occipital areas, most often in the right hemisphere, indicate a relationship between the chromosomal constitution 45,X and EEG background activity. They suggest the presence of functional brain disturbance in the thalamus and in the ascending reticular activating system, which tends to disturb the thalamo-cortical circuit. Further studies, including topographic and sequential power spectrum analysis of EEG background activity, 24-h continuous EEG recording, blood flow studies (positron computerized tomography) and neuropathological examination, may be needed.Tables I-VI are available on request  相似文献   

4.
Abstract

Background: Many researchers have tried to investigate pain by studying brain responses. One method used to investigate pain-related brain responses is continuous electroencephalography (EEG). The objective of the current study is to add on to our understanding of EEG responses during pain, by differentiation between EEG patterns indicative of (i) the noxious stimulus intensity and (ii) the subjective pain sensation.

Methods: EEG was recorded during the administration of tonic experimental pain, consisting of six minutes of contact heat applied to the leg via a thermode. Two stimuli above pain threshold, one at pain threshold and two non-painful stimuli were administered. Thirty-six healthy participants provided a subjective pain rating during thermal stimulation. Relative EEG power was calculated for the frequency bands alpha1, alpha2, beta1, beta2, delta, and theta.

Results: Whereas EEG activity could not be predicted by stimulus intensity (except in one frequency band), subjective pain sensation could significantly predict differences in EEG activity in several frequency bands. An increase in the subjective pain sensation was associated with a decrease in alpha2, beta1, beta2 as well as in theta activity across the midline electrodes.

Conclusion: The subjective experience of pain seems to capture unique variance in EEG activity above and beyond what is captured by noxious stimulus intensity.  相似文献   

5.
The EEG mapping study tested age-related changes in power of EEG rhythms from delta to gamma ranges under healthy cognitive aging associated with preserved cognitive abilities and involvement in complex professional activity. 32 subjects of higher age group (HAG, mean age 65.1 +/- 1.18, 14 men and 18 women) and 33 subjects of lower age group (LAG mean age 22.1 +/- 0.38, 18 men and 15 women) participated in the study. Mean power of slow (delta, theta and alpha2) activity decreased and of fast activity (beta, gamma) increased as subject age increased. Compared to subjects of LAG subjects of HAG displayed a reduction in heterogeneity of EEG activity across recording sites. Centro-temporal gradients of power for frequency ranges from delta to beta2 and frontoparietal gradients and hemispheric asymmetry for alpha and beta1 rhythms were smoothed in subjects of HAG. These results suggest that observed age-related changes in baseline EEG may be the prerequisite for compensatory neural recruitment that may be associated as with allocation of more resources in cognitive processes so with reorganization of cortical networks including areas susceptible to physiological changes with aging.  相似文献   

6.

Background

Synchronized electroencephalogram (EEG) activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R) and dopamine (DA) D1 and D2 receptors (D1Rs and D2Rs) on modafinil-induced desynchronization in mice.

Methodology/Principal Findings

Mice were treated with cholinergic receptor antagonist scopolamine and monoamine depletor reserpine to produce experimental EEG synchronization characterized by continuous large-amplitude synchronized activity, with prominent increased delta and decreased theta, alpha, and beta power density. The results showed that modafinil produced an EEG desynchronization in the model. This was characterized by a general decrease in amplitude of all the frequency bands between 0 and 20 Hz, a prominent reduction in delta power density, and an increase in theta power density. Adrenergic α1R antagonist terazosin (1 mg/kg, i.p.) completely antagonized the EEG desynchronization effects of modafinil at 90 mg/kg. However, DA D1R and D2R blockers partially attenuated the effects of modafinil. The modafinil-induced decrease in the amplitudes of the delta, theta, alpha, and beta waves and in delta power density were completely abolished by pretreatment with a combination of the D1R antagonist SCH 23390 (30 µg/kg) and the D2R antagonist raclopride (2 mg/kg, i.p.).

Conclusions/Significance

These results suggest that modafinil-mediated desynchronization may be attributed to the activation of adrenergic α1R, and dopaminergic D1R and D2R in a model of EEG synchronization.  相似文献   

7.

Background

EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.

Methodology

In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.

Principal Findings

We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.

Conclusions

We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.  相似文献   

8.
The model of mathematical logic tasks was developed at which decision there was a value coherence in delta-range raised. In low-frequency ranges (delta, theta, and alpha) a coherence of potentials of frontal cortex were increased. In high-frequency ranges (beta1, beta2, gamma) in frontal cortex coherence was decreased, and its increasing in central, parietal, temporal, and occipital areas with prevalence in the left hemisphere. Most changes of quantity of positive connections observed in value diagonal coherence. Analysis of spectral power EEG has shown, that at the decision of tasks there is a generalised raising on a cortex in delta-range. Theta-activity increased in a frontal cortex, and gamma band was raised in occipital areas. A spectral power in an alpha range mainly decreased.  相似文献   

9.
Female mate choice is of importance for individual fitness as well as a determining factor in genetic diversity and speciation. Nevertheless relatively little is known about how females process information acquired from males during mate selection. In the Emei music frog, Babina daunchina, males normally call from hidden burrows and females in the reproductive stage prefer male calls produced from inside burrows compared with ones from outside burrows. The present study evaluated changes in electroencephalogram (EEG) power output in four frequency bands induced by male courtship vocalizations on both sides of the telencephalon and mesencephalon in females. The results show that (1) both the values of left hemispheric theta relative power and global lateralization in the theta band are modulated by the sexual attractiveness of the acoustic stimulus in the reproductive stage, suggesting the theta oscillation is closely correlated with processing information associated with mate choice; (2) mean relative power in the beta band is significantly greater in the mesencephalon than the left telencephalon, regardless of reproductive status or the biological significance of signals, indicating it is associated with processing acoustic features and (3) relative power in the delta and alpha bands are not affected by reproductive status or acoustic stimuli. The results imply that EEG power in the theta and beta bands reflect different information processing mechanisms related to vocal recognition and auditory perception in anurans.  相似文献   

10.
Previous studies on cognitive dynamics showed that oscillatory responses of P300 are composed of mainly delta and theta responses. In the present study, for the first time, the long-distance intra-hemispheric event related coherence (auditory oddball paradigm) and evoked coherence (simple sound) were compared in order to evaluate the effects of cognitive tasks on the long-distance coherences. Seventeen healthy subjects (8 female, 9 male) were included in the study. The coherence was analyzed for delta (1–3.5 Hz), theta (4–7.5 Hz) and alpha (8–13 Hz) frequency ranges for (F3-P3, F4-P4, F3-T7, F4-T8, F3-O1, F4-O2) electrode pairs. The coherence to target responses were higher than the non-target and simple auditory response coherence. This difference is significant for the delta coherence for both hemispheres and for theta coherences over the left hemisphere. The highest coherences were recorded at fronto-temporal locations for all frequency bands (delta, theta, alpha). Furthermore, fronto-parietal coherences were higher than the fronto-occipital coherences for all frequency bands (delta, theta, alpha).These results show that the fronto-temporal and fronto-parietal connections are most relevant for the identification of the target signal. This analysis open the way for a new interpretation of dynamic localization results during cognitive tasks.  相似文献   

11.
Modally specific and supramodal components of EEG dynamics, related to involuntary reorientation of anticipatory attention from internal into external, were studied using unblocking of either visual or acoustic apparatus. EEG registration took place while the examinees were in the resting states: with opened eyes; with closed eyes; with closed eyes and inserted noise-protective earplugs. Averaged values of EEG power in each of the derivations and of EEG coherence in each of the derivation pairs were calculated for an every examinee and for each of the states. The estimations were done in delta, theta, alphal, alpha2, beta1, beta2, gamma frequency bands. The received results support an idea about manifestation of both supramodal and modally specific components in brain mechanisms of involuntary anticipatory attention. These results seem to be of certain interest for existing discussion on divergence and convergence between systemic mechanisms of visual and auditory attention.  相似文献   

12.
Results illustrating an atypical neural processing in the early and late differentiation of infant faces have been obtained with neglectful mothers. The present study explores whether a different pattern of response is observed when using non-infant affective pictures. We examined the event-related evoked potentials and induced delta, theta and alpha activity in 14 neglectful mothers and 14 control mothers elicited while categorizing positive, negative and neutral pictures from the International Affective Picture System. Self-reports of anhedonia and empathy were also recorded. Early posterior negativity, P200 and late positive potential components were modulated by the emotional content of pictures in both groups. However, the LPP waveform had a more delayed and more attenuated maximum in neglectful mothers than in control mothers. Oscillatory responses indicated lower power increases for neglectful mothers than for control mothers in delta (1–4 Hz), theta (4–8 Hz) and lower alpha (8–10 Hz) bands at frontal sites, and a more consistent increase for neglectful mothers in theta and lower alpha bands at occipital sites, especially for negative pictures. These findings help us to better understand the limits of emotional insensitivity in neglectful mothers.  相似文献   

13.
We test the possible multifractal properties of dominant EEG frequency components, when a subject tracks a path on a map, either only by eyes (imaginary movement – IM) or by visual-motor tracking of discretely moving spot in regular (RM) and Brownian time-step (BM) (real tracking of moving spot). We check the hypotheses that the fractal properties of filtered EEG (1) change with respect to the law of spot movement; (2) differ among filtered EEG components and scalp sites; (3) differ among real and imaginary tracking. Sixteen right-handed subjects begin to perform IM, next – real spot tracking (RM and BM) following a moving spot on streets of a citymap displayed on a computer screen, by push forward/backward a joystick. Multichannel long-lasting EEG is band-pass filtered for theta, alpha, beta and gamma oscillations. The Wavelet-Transform-Modulus-Maxima-Method is applied to reveal multifractality [local fractal dimensions D max(h)] among task conditions, frequency bands and sites. Non-parametric statistical estimation of the fractal measures h D max is finally applied. Multifractality is established for all experimental conditions, EEG components and sites as follows among filtered components – anticorrelation (h Dmax < 0.5) in beta and gamma, and long-range correlation (h Dmax > 0.5) for theta and alpha oscillations; among tasks – for RM and BM, h Dmax differ significantly whereas IM resembles mostly RM; among sites – no significant difference for local fractal properties is established. The results suggest that for both imaginary and real visual-motor tracking a line, multifractal scaling, specific for lower and higher EEG oscillations, is a very stable intrinsic one for the activity of large brain areas. The external events (task conditions) insert weak effect on the scaling.  相似文献   

14.
According to the results of psychological testing, persons aged 18 to 21 years were divided into four groups, women and men with low and high productivity of divergent (creative, nonroutine) thinking (n = = 18 to 23). Results of EEG recording (19 leads) were used for calculation of the coherence coefficients for oscillations of the delta, theta, alpha1, alpha2, alpha3, beta, and gamma frequencies in lead pairs and estimation of integral indices of coherence within the anterior and posterior cortical regions and between these zones (interaction coefficients, IC1-IC3, respectively). EEG was recorded in the resting state and in the course of resolving convergent- and divergent-type cognitive test tasks. It was found that, during the performance of tests of both types, men with a higher productivity of divergent thinking demonstrated significantly higher values of IC1 (that characterizes the coherence in associative linkages within the anterior cortex) for oscillations of all EEG frequency ranges compared with the respective estimates for “low-creative” men. Similar increments were typical of the IC2 values for low- and midfrequency EEG rhythms (delta, theta, and alpha). At the same time, values of the “interregional” IC3 for theta, beta, and gamma activity in “high-creativity” men were significantly lower. In women of both groups (low and high creativity), such specificity of the IC1-IC3 patterns was practically not observed, i.e., the respective aspect demonstrated clear gender specificity. The sex of the subjects and type of the performed cognitive tests could not be considered factors significantly affecting the calculated absolute IC values. The observed specificities of integral coherence indices are probably associated with different strategies of the performance of cognitive tasks in men and women. Our findings allow us to believe that the above interrelations between integrated coherence indices can be used as EEG markers of high productivity of divergent thinking in men. The more flexible strategies of thinking in women are probably related to more variable neurophysiological cortical mechanisms (compared with those in men), and this type of organization is not clearly reflected in the pattern of intracortical interactions estimated by coherence indices.  相似文献   

15.
This pilot study examines the effect of heart rate variability (HRV) biofeedback on measures of electroencephalogram (EEG) during and immediately after biofeedback. Eighteen healthy males exposed to work-related stress, were randomised into an HRV biofeedback (BIO) or a comparative group (COM). EEG was recorded during the intervention and during rest periods before and after the intervention. Power spectral density in theta, alpha and beta frequency bands and theta/beta ratios were calculated. During the intervention, the BIO group had higher relative theta power [Fz and Pz (p < 0.01), Cz (p < 0.05)], lower fronto–central relative beta power (p < 0.05), and higher theta/beta [Fz and Cz (p < 0.01), Pz (p < 0.05)] than the COM group. The groups showed different responses after the intervention with increased posterior theta/beta (p < 0.05) in the BIO group and altered posterior relative theta (p < 0.05), central relative beta (p = 0.06) and central–posterior theta/beta (p < 0.01) in the post-intervention rest period. The findings of this study suggest that a single session of HRV biofeedback after a single training session was associated with changes in EEG suggestive of increased internal attention and relaxation both during and after the intervention. However, the comparative intervention was associated with changes suggestive of increased mental effort and possible anxiety during and after the intervention.  相似文献   

16.

Background

Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS.

Methods

18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity.

Results

Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05).

Discussion

There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.  相似文献   

17.
Changes in electroencephalography (EEG) amplitude modulations have recently been linked with early-stage Alzheimer’s disease (AD). Existing tools available to perform such analysis (e.g., detrended fluctuation analysis), however, provide limited gains in discriminability power over traditional spectral based EEG analysis. In this paper, we explore the use of an innovative EEG amplitude modulation analysis technique based on spectro-temporal signal processing. More specifically, full-band EEG signals are first decomposed into the five well-known frequency bands and the envelopes are then extracted via a Hilbert transform. Each of the five envelopes are further decomposed into four so-called modulation bands, which were chosen to coincide with the delta, theta, alpha and beta frequency bands. Experiments on a resting-awake EEG dataset collected from 76 participants (27 healthy controls, 27 diagnosed with mild-AD, and 22 with moderate-AD) showed significant differences in amplitude modulations between the three groups. Most notably, i) delta modulation of the beta frequency band disappeared with an increase in disease severity (from mild to moderate AD), ii) delta modulation of the theta band appeared with an increase in severity, and iii) delta modulation of the beta frequency band showed to be a reliable discriminant feature between healthy controls and mild-AD patients. Taken together, it is hoped that the developed tool can be used to assist clinicians not only with early detection of Alzheimer’s disease, but also to monitor its progression.  相似文献   

18.
Current research suggests that autism spectrum disorder (ASD) is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.  相似文献   

19.
To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilites for the delta, theta, alpha and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans.  相似文献   

20.
Baclofen is a selective gamma-aminobutyric acid (GABA) type B agonist that may have important medicinal uses, such as in analgesics and drug addiction treatment. In addition, evidence is accumulating that suggests GABAergic-mediated neurotransmission is altered during aging. This study investigated whether baclofen administration (5 mg kg−1) induces differential effects on cortical electrical activity with age. Electroencephalograms (EEGs) were recorded from young (3–4 months) and aged (15–17 months) rats, and both the absolute and relative powers in five frequency bands (delta: 2–4 Hz; theta: 4–8 Hz; alpha: 8–12 Hz; beta: 12–20 Hz; gamma: 20–100 Hz) were analyzed. Before administration of baclofen, we found that the EEG relative power in the beta band was higher in the aged than that in the young rats. After administration of baclofen, there was a slower increase in the relative power in the delta band in the aged than that in the young rats. Moreover, there was no significant difference between the two age groups in absolute power in any frequency band. These findings indicate that baclofen treatment appears to differentially modify cortical EEG activity as a function of age. Our data further elucidate the relationship between GABAB receptor-mediated neurotransmission and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号