首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The limited antifibrotic effect of therapeutic angiotensin blockade, the fact that angiotensin blockade dramatically elevates renin levels, and recent evidence that renin has an angiotensin-independent, receptor-mediated profibrotic action led us to hypothesize that combining renin receptor inhibition and ANG II blockade would increase the antifibrotic effect of angiotensin blockade alone. Using cultured nephritic glomeruli from rats with anti-Thy-1-induced glomerulonephritis, the maximally effective dose of enalaprilate was determined to be 10(-4) M, which reduced mRNAs for transforming growth factor (TGF)-β1, fibronectin (FN), and plasminogen activator inhibitor-1 (PAI-1) by 49, 65, and 56% and production of TGF-β1 and FN proteins by 60 and 49%, respectively. Disease alone caused 6.8-fold increases in ANG II levels that were reduced 64% with enalaprilate. In contrast, two- and threefold disease-induced increases in renin mRNA and activity were further increased 2- and 3.7-fold with 10(-4) M enalaprilate treatment. Depressing the renin receptor by 80% with small interfering (si) RNA alone reduced fibrotic markers in a manner remarkably similar to enalaprilate alone but had no effect on glomerular renin expression. Enalaprilate and siRNA combination therapy further reduced disease markers. Notably, elevated TGF-β1 and FN production was reduced by 73 and 81%, respectively. These results support the notion of a receptor-mediated profibrotic action of renin, suggest that the limited effectiveness of ANG II blockade may be due, at least in part, to the elevated renin they induce, and support our hypothesis that adding renin receptor inhibitor to ANG II blockade in patients may have therapeutic potential.  相似文献   

2.
Patterns of in vitro renal renin release and the ability of atriopeptin to directly inhibit renin release have been examined in the rat, rabbit, and dog, but have been unstudied in the primate kidney. Accordingly, we examined renin release from superficial renal cortical slices of the squirrel monkey (Samiri sciuresus). The average age of the 5 animals was 10.2 +/- 2.5 yr at the time of study. Renin release was stimulated significantly by the beta-adrenergic agonist isoproterenol in concentrations of 10(-5) M (1.67-fold) and 10(-4) M (1.84-fold). Isoproterenol-induced renin release was inhibited by atriopeptin III (ANP, 2 X 10(-8) M) and the adenylate cyclase inhibitor dideoxadenosine (DDA, 10(-5) M). Similarly, the incubation of the superficial cortical slices with arachidonic acid (10(-3) M) resulted in a 4-fold increase in tissue renin release which was blocked by the calcium ionophore A23187 (17 X 10(-6) M) and ANP; interestingly, DDA did not block arachidonic acid-induced renin release. These results suggest that ANP exerts a direct inhibitory effect on B-adrenergic and arachidonic acid-induced renin release in the primate kidney. Further, the inhibitory action of A23187 on renin release suggests, as in other species, an integral role for intracellular calcium in the renin release process. These patterns of renin release in primate kidney are similar to those observed in the rodent kidney in vitro.  相似文献   

3.
To assess the effect of angiotensin II (A II) on the secretion of human adrenal androgens (AA), plasma dehydroepiandrosterone (DHEA), DHEA sulfate (DS) and delta 4-androstenedione (delta 4-A) were measured in eight normal men 60 and 120 min after stimulation of endogenous A II by a bolus injection of 40 mg frusemide, and the direct effect of A II on the secretion of adrenal androgens was examined in cultured human adrenocortical cells in the presence of a low concentration of ACTH. The administration of frusemide led to a significant increase in the plasma DHEA and DS concentration as well as plasma renin activity (PRA) and aldosterone concentration (PAC), but did not change plasma cortisol and delta 4-A. In the culture of human adrenocortical cells, 10(-9)-10(-5) M A II or 10(-13) M ACTH alone did not stimulate the secretion of DHEA, DS and delta 4-A, while 10(-7) and 10(-5) M A II in the presence of 10(-13) M ACTH caused a significant increase in DHEA and DS secretion with no change in delta 4-A. These results suggest that the activated renin-angiotensin system stimulates the secretion of adrenal androgens by a direct effect of A II on adrenal cortical cells.  相似文献   

4.
Endothelin inhibits renin release from isolated rat glomeruli   总被引:8,自引:0,他引:8  
The effect of endothelin on renin release from isolated rat glomeruli was examined. Endothelin inhibited basal renin release in a dose-dependent manner with an IC50 of 1.0 x 10(-9) M. Endothelin also inhibited renin release stimulated by isoproterenol (10(-5) M). Nifedipine (10(-5) M), a calcium channel blocker, induced an increase in renin release. Endothelin did not affect this nifedipine-induced renin release. These results suggest that endothelin inhibits renin release via a calcium entry mechanism and increases intracellular calcium.  相似文献   

5.
AIMS: Thiazolidinediones increase circulating adiponectin. We have previously demonstrated the involvement of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in insulin-stimulated adiponectin secretion. We therefore investigated the effects of the thiazolidinedione pioglitazone on acute adiponectin secretion, and the involvement of the PI3K signaling pathway in this action. MAIN METHODS: We treated murine 3T3-L1 and human primary adipocytes with 1-10 uM pioglitazone for 2 h, +/-PI3K inhibition by Wortmannin (WT). Secreted adiponectin was measured by Western blot. PI3K activity following 15-minute treatments with 1-10 uM pioglitazone was measured by thin layer chromatography. Pioglitazone's effect on adiponectin synthesis and on secretion of newly synthesized adiponectin was studied in 3T3-L1 adipocytes using a pulse-chase technique. KEY FINDINGS: Pioglitazone was found to increase adiponectin secretion and PI3K activity in a dose-dependent manner from 3T3-L1 and human adipocytes. In 3T3-L1 adipocytes, 10 uM pioglitazone increased adiponectin secretion by 84+/-14% (p<0.0001) at 2 h. Similarly, in human adipocytes there was a 56+/-18% (p<0.02) increase in secretion. WT blocked the pioglitazone effect and decreased adiponectin secretion at 2 h (47% of pioglitazone treated, p<0.006). Pioglitazone increased PI3K activity in a dose-dependent manner in both 3T3-L1 (1.7 vs. 2.7-fold increase over control at 2 uM vs. 10 uM dose, p=0.02) and human adipocytes. SIGNIFICANCE: Our data show that pioglitazone acutely stimulates adiponectin secretion from both 3T3-L1 and human adipocytes. This acute effect of pioglitazone is PI3K-dependent.  相似文献   

6.
Basal progesterone (P4) production by isolated goat ovarian cells in vitro was in the order corpus luteum (CL) greater than granulosa (G) greater than theca (TH), while estradiol (E2) production was in the order TH greater than G greater than CL. In G cells, various concentrations (0.01 to 100 micrograms/ml) of luteinizing hormone (LH), human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH) increased P4 and E2 secretion. Testosterone (T, 10(-9) to 10(-5) M) produced dose-dependent increases in P4 and E2 secretion. Testosterone and LH together had an additive effect on E2 secretion. The combined effect of the lower (less than 10(-6) M) concentrations of T and LH on P4 production was marginally higher than either agent alone, but the increase was statistically insignificant; at higher concentrations of T (10(-6) and 10(-5) M) in combination with LH, P4 secretion was similar to that with LH alone, but was significantly (p less than 0.01 and less than 0.001, respectively) less compared to that with T alone. Follicle-stimulating hormone and T together produced a synergistic effect on E2 and an additive effect on P4 production. In TH cells, a dose-dependent increase in P4 and E2 production was observed with LH and hCG, but the effect of FSH was not significant. Testosterone produced a dose-dependent increase in P4 and E2 secretion. Testosterone and LH together induced higher steroid production than either agent alone. However, the increase was not statistically significant compared to T alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   

8.
The present studies using kidney slices were designed to test whether serotonergic stimulation of renin secretion is mediated via an endocrine signal. Previous in vivo studies have indicated that central serotonergic neurons regulate renin secretion. Administration of the serotonin releaser dl-p-chloroamphetamine-HCl (PCA) to rats causes dose-dependent increases in renin secretion that can be blocked by serotonin depletion with p-chlorophenylalanine (PCPA), injections of 5,7-dihydroxytryptamine into the dorsal raphe nucleus or ablation of the mediobasal hypothalamus. The renin-releasing substance was obtained from nephrectomized male donor rats which were sacrificed 1 hour after receiving an injection of PCA intraperitoneally. Plasma from rats that received saline injections was used as control. The plasma was collected and separated by ultrafiltration into fractions containing solutes with molecular weights between 500-10,000 daltons. The renin-releasing ability of this substance was studied in vitro using rat renal cortical slices. The plasma fraction (M.W. = 500 - 10,000) from rats treated with PCA caused dose-dependent increases in renin release from the kidney slices. Heating of the plasma factor at 100 degrees C for 30 minutes did not reduce the ability of this substance to release renin from the kidney slices. PCA alone (66 X 10(-6)M) did not increase renin release from the kidney slices. These data suggest that stimulation of serotonergic receptors in the brain triggers the release of an endocrine factor that is capable of directly stimulating renin release from the kidneys.  相似文献   

9.
Turpentine injection into rats elicits enhanced secretion of acute phase proteins including alpha 2-macroglobulin (alpha 2M). Hypophysectomized rats, however, do not respond in this way unless dexamethasone is given together with turpentine. On the other hand, dexamethasone injection alone did not result in an induction of alpha 2M synthesis. When a medium of Kupffer cell cultures was added to hepatocytes, a dose-dependent stimulation of alpha 2M synthesis of up to 4-fold after 10-12 h was observed. However, the presence of low concentrations (10(-9)M) of dexamethasone was essential for the stimulatory effect. We conclude that the acute phase induction of alpha 2M in hepatocytes requires the synergistic action of glucocorticoids and a non-dialysable factor secreted by Kupffer cells.  相似文献   

10.
Endothelin: a new inhibitor of renin release   总被引:10,自引:0,他引:10  
Endothelin is a recently-discovered vasoconstrictor peptide which is produced by endothelium and acts on vascular smooth muscle cells. At present its actions on other organs or cells are unknown. We studied the effect of endothelin on renin release in a dynamic superfusion system of dispersed rat juxtaglomerular (JG) cells. Endothelin in concentrations of 10(-11) M or more inhibited renin release dose-dependently and this inhibitory action vanished in the absence of extracellular Ca. It is suggested that endothelin is an inhibitory regulator of renin secretion from JG cells and its action is Ca-dependent.  相似文献   

11.
The effects of naloxone on basal and ACTH, Angiotensin II (AII) and [K+] o stimulated aldosterone secretion from superfused rat adrenocortical tissue were investigated. A high dose (10(-6) M) of naloxone inhibited while a smaller dose (10(-10) M) potentiated and doses of 10(-8) or 10(-12) M naloxone were without an effect on ACTH stimulated aldosterone secretion. A potentiation of AII stimulated aldosterone secretion was observed beginning 2 hrs after 10(-6) or 10(-10) M naloxone was administered while no effect was observed with 10(-4) M naloxone. No effects of 10(-6), 10(-8), 10(-12) M naloxone were detected on aldosterone secretion stimulated by transiently elevating extracellular potassium. Naloxone from 10(-4) to 10(-12) M did not appear to significantly influence basal steroidogenic activity under these conditions. These findings demonstrate that the "opioid antagonist" naloxone has prominent actions on adrenocortical tissue. Both the specificity and lack of specificity of the action of this agent to influence the activity of the 3 secretagogues suggest that naloxone and possibly a naturally occurring endogenous ligand interacts with one or more membrane receptor distinct from the ACTH receptor. A naturally occurring ligand for this receptor could play a prominent role in the physiological regulation of adrenal steroid secretion.  相似文献   

12.
T Mine  I Kojima    E Ogata 《The Biochemical journal》1989,258(3):889-894
The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.  相似文献   

13.
Tuberculosis is characterized by granuloma formation and caseous necrosis, but the factors causing tissue destruction are poorly understood. Matrix metalloproteinase (MMP)-9 (92-kDa gelatinase) secretion from monocytes is stimulated by Mycobacterium tuberculosis (M. tb) and associated with local tissue injury in tuberculosis patients. We demonstrate strong immunohistochemical MMP-9 staining in monocytic cells at the center of granuloma and adjacent to caseous necrosis in M. tb-infected patient lymph nodes. Minimal tissue inhibitor of MMPs-1 staining indicated that MMP-9 activity is unopposed. Because granulomas characteristically contain few mycobacteria, we investigated whether monocyte-monocyte cytokine networks amplify MMP-9 secretion. Conditioned medium from M. tb-infected primary human monocytes or THP-1 cells (CoMTB) stimulated MMP-9 gene expression and a >10-fold increase in MMP-9 secretion by monocytes at 3-4 days (p < 0.009, vs controls). Although CoMTB stimulated dose-dependent MMP-9 secretion, MMP-1 (52-kDa collagenase) was not induced. Anti-TNF-alpha Ab but not IL-1R antagonist pretreatment decreased CoMTB-induced MMP-9 secretion by 50% (p = 0.0001). Anti-TNF-alpha Ab also inhibited MMP-9 secretion from monocytic cells by 50%, 24 h after direct M. tb infection (p = 0.0002). Conversely, TNF-alpha directly stimulated dose-dependent MMP-9 secretion. Pertussis toxin inhibited CoMTB-induced MMP-9 secretion and enhanced the inhibitory effect of anti-TNF-alpha Ab (p = 0.05). Although chemokines bind to G protein-linked receptors, CXCL8, CXCL10, CCL2, and CCL5 did not stimulate monocyte MMP-9 secretion. However, the response to cholera toxin confirmed that G protein signaling pathways were intact. In summary, MMP-9 within tuberculous granuloma is associated with tissue destruction, and TNF-alpha, critical for antimycobacterial granuloma formation, is a key autocrine and paracrine regulator of MMP-9 secretion.  相似文献   

14.
The ability of atriopeptin III (AP) to directly inhibit renal renin release has not been resolved. This issue was examined in a series of experiments performed in a system of rat renal cortical slices (dry weight 1.91 mg) in which the goal was to explore the effects of AP on renin release induced by cyclic AMP (cAMP)-coupled stimuli or by agents which are believed to decrease intracellular calcium (Cai). Concentration response relationships were initially established for all test agents. The cAMP stimuli utilized were isoproterenol (10(-5) M), forskolin (10(-5) M), and dibutyryl cAMP (3 X 10(-4) M); each of these agents produced a significant increase in renin release in the system (with isoproterenol a 59% increase, with forskolin 37%, and with dibutyryl cAMP 52%). The addition of AP (2.09 X 10(-8) M, a minimum inhibitory concentration derived from preliminary studies) significantly blunted these increases; in the case of the dibutyryl cAMP-stimulated renin release, the inhibition was partial as a significant 25% increase in renin occurred in the presence of AP. The addition of the calcium channel blocking agent diltiazem (10(-4) M) resulted in a significant increase in renin release (364 to 567 ng X mg-1, p less than .05) which was not blocked by the addition of AP. Similarly, TMB-8 (0.6 X 10(-4) M), another agent thought to lower Cai, also resulted in increased renin release (455 to 810 ng X mg-1), p less than .01) which was also unaffected by the addition of the AP. In summary, these results show that AP is capable of partially inhibiting renin release in vitro, particularly renin release coupled to cAMP action. In contrast, renin release induced by a decline in Cai appears to be unaffected by the addition of AP.  相似文献   

15.
Within 60 min of the administration of serotonin to fasted-refed rats, there was a 5-, 16-, and 20-fold stimulation of the mRNA coding for the cytosolic form of P-enolpyruvate carboxykinase in the kidney, small intestine and liver, respectively. This stimulation was 5-, 1.3-, and 2-fold higher than noted in the same tissue after 24 h of starvation. Dose- and time-response curves to serotonin in the three tissues were similar. The level of PEPCK mRNA in the liver was significantly elevated within 30 min of serotonin administration, whereas 60 min was required in the small intestine and the kidney. The direct effect of serotonin on PEPCK mRNA was also assessed in hepatocytes maintained in primary culture. Serotonin (10(-8) M to 10(-4) M) caused a dose-dependent increase in the level of PEPCK mRNA and a transient increase in cAMP concentration. Within the first min of serotonin (10(-6) M) addition to cells, cAMP concentration increased 4-fold and returned after 10 min to basal level. Therefore, these results provide functional evidence of serotonin action in the rat peripheric tissues and suggest that cAMP is involved in its intracellular signalling.  相似文献   

16.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

17.
Prostaglandins have been shown to be involved in the mechanism of renin secretion in a variety of situations. Both arachidonic acid and prostaglandin endoperoxide have been shown to release renin from cortical slices and to be converted to PGI2 by cortical microsomes. In the present studies PGI2 was found to cause a time dependent increase in renin release from rabbit renal cortical slices, a system isolated from any indirect effects that result from the administration of prostaglandins in vivo. The stimulation was linear up to 30 minutes and effective over a range of concentrations from 10(7 M to 10(-5) M. At similar concentrations 6-keto-prostaglandin F1alpha was not active on these slices. Thus, it is proposed that PGI2 exerts a direct effect on the release of renin from cortical cells and may be the mediator of arachidonate or prostaglandin endoperoxide stimulated renin secretion.  相似文献   

18.
Our previous study on kidney cortical slices showed that Bay K 8644, a dihydropyridine calcium channel agonist, produced a dose-dependent inhibitory action on the release of renin. The present study was performed to examine the effect of Bay K 8644 on renal function and renin secretion in vivo. When Bay K 8644 was directly infused into the renal artery of anesthetized rats, 2 micrograms/kg/min had no effect on renal blood flow (RBF) and glomerular filtration rate (GFR), but decreased urine flow (UF), urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) by about 30%, 55% and 35%, respectively, thereby suggesting that Bay K 8644 enhanced the tubular reabsorption of water and sodium. When 10 micrograms/kg/min were infused, RBF, GFR, UF, UNaV and FENa decreased to about 95%, 70%, 35%, 35% and 30% of each control value. The administration of Bay K 8644 at 10 micrograms/kg/min did not influence the basal levels of plasma renin activity (PRA) and renin secretion rate (RSR), but did inhibit significantly isoproterenol-induced increasing effects on PRA and RSR. These results indicate that the activation of voltage-dependent calcium channels with Bay K 8644 influences the control of renal function and renin secretion in vivo.  相似文献   

19.
Using isolated submucosal glands from feline trachea, we examined the effect of vasoactive intestinal peptide (VIP) on mucus glycoprotein secretion and glandular contraction by measuring released radiolabeled glycoconjugates and induced tension, respectively. VIP (10(-10) to 10(-6) M) produced a dose-dependent increase in [3H]glycoconjugate release of up to 300% of controls, which was inhibited by VIP antiserum and not inhibited by atropine, propranolol, or phentolamine. VIP at a low concentration (10(-9) M), which did not produce any significant increases over controls, produced a 2.4- to 5-fold augmentation of the glycoconjugate release induced by 10(-9) to 10(-7) M methacholine (MCh). Atropine or VIP antiserum abolished the augmentation. VIP did not produce any alteration in isoproterenol- or phenylephrine-evoked glycoconjugate secretion. VIP (up to 10(-5) M) did not produce any alteration in the tension, even when the gland had contracted with MCh, or any augmentation of contraction induced by MCh (10(-9) to 10(-7) M). These results indicate that VIP induces mucus glycoprotein release from secretory cells and also that it potentiates the secretion induced by cholinergic stimulation.  相似文献   

20.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号