首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The net water vapour exchange ofPhytoseiulus persimilis A.-H. is described. Water loss by transpiration increases progressively with ambient temperature. The transpiration rate is directly proportional to the saturation deficit of the air (15 to 30° C) and at constant temperature linearly dependent on the water vapour activity: mT=–0.81 av+0.91 (for av 0.0 to 0.85 at 20°C). Phytoseiulus persimilis is able to absorb water vapour from the unsaturated atmosphere. This occurs above a certain threshold (critical equilibrium activity, CEA), which is av=0.9 at 15 to 25°C and increases to av=0.935 at 30°C.The environmental humidity conditions influencingP. persimilis on the leaf surface are described. The diurnal water vapour profile within the laminar layer at the leaf surface includes periods with water vapour values high enough for these mites to utilize their water vapour sorption capability and to restore a previously-suffered water deficit. In addition,P. persimilis shows a positive hygrotactic behaviour when in a state of water deficit.The survival time of starvingP. persimilis is at least doubled when a possibility to absorb water vapour is available. The water balance at limited food resources is discussed. With a food supply (one prey mite, containing about 5.5 g water) every 3 days and a water vapour activity of av=0.76 (20°C), water balance is achieved and the survival time is maximal (approximately 120 days).  相似文献   

2.
Water uptake by amorphous sugars is an issue of high importance for the food and pharmaceutical industries. However, while the processes associated with sorption-induced crystallisation have been widely studied, little is known regarding the uptake mechanisms associated with pre-crystallisation water levels. In the present investigation we use dynamic vapour sorption to study the water uptake mechanisms associated with amorphous trehalose. More specifically, we have prepared spray-dried amorphous trehalose with three initial water contents and studied water uptake as a function of time and relative humidity. We model the data obtained prior to crystallisation and suggest two mechanisms that are based on Type II diffusion (using the Peleg equation), which predominates under high humidity conditions (50% RH and above), while we use a Type I Fickian diffusion expression to model uptake under low relative humidity conditions (40% RH and below). The model allows prediction of equilibrium sorption values which correlate well with previously published data calculated from equilibrium vapour pressure data. We also note that the water content following recrystallisation is greater than that predicted by the stoichiometric ratio. A novel model is suggested whereby recrystallisation onset times may be estimated from the vapour sorption data. In conclusion the study has demonstrated that pre-crystallisation water sorption may be associated with two mechanisms depending on the humidity conditions and that such modelling allows insights into both the mechanisms of uptake and the storage behaviour of amorphous sugar samples.  相似文献   

3.
The temporal dependence of water exchange between an arthropod and its surroundings fits a mathematical model based on diffusion theory. The model requires that the mass change rate of L. echidnina results from a zeroorder component consisting primarily of water sorption and a first-order component made up largely of water loss. Tentatively, transpiration of water is associated with primarily the tracheal system, and sorption of water primarily with other surfaces. Placing mites in a CO2 atmosphere greatly increased their water loss, but had little effect on sorption of water. The effect of increase in temperature on the sorption rate (m?s) and transpiration rate constant (kT) was to increase them. The influence of the activity of the water in the vapour phase in the ambient air (av) was primarily on sorption.  相似文献   

4.
Stomatal responses to humidity in air and helox   总被引:11,自引:5,他引:6  
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed 'helox'. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water-vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces ( ci ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci , suggesting heterogeneous (patchy) stomatal closure.  相似文献   

5.
Electrical conductance ( λ ) was measured continuously and in vivo on leaf surfaces of Vicia faba and Aegopodium podagraria . λ increased with rise and decreased with fall in humidity, exhibiting a hysteresis during an applied humidity cycle [90–20–-90% relative humidity (r.h.)]. After treatment with NaNO3 aerosols, a sudden increase in λ was observed at 73% r.h., which is close to the deliquescence point of the salt. Transpiration and electrical conductance of untreated leaves were measured simultaneously under conditions of constant r.h., while the photosynthetic photon flux density and CO2 concentration of the air were varied to induce changes of stomatal aperture. At 35% r.h., changes of light and CO2 level revealed a strong correlation between stomatal conductance ( g S) and λ for Vicia faba leaves. This was also found at 90, 75, 60, 45 and 25% r.h. on the lower but not on the astomatous, upper surface of Aegopodium podagraria . The correlation between g S and λ for stomata-bearing leaf surfaces indicates that an equilibrium exists between the ambient water vapour phase and the liquid water phase on and within the cuticle. This is modified by transpired water vapour influencing the air humidity inside the boundary layer. Our results imply re-condensation of transpired water vapour to salts on the leaf surface and its sorption to the cuticle.  相似文献   

6.
Water vapour absorption is shown to occur in 22 species of Psocoptera inhabiting diverse environments and representing all major groups of this insect order. Evidently the faculty is a common feature of the whole order and it seems not to be related to specific environmental conditions. For the first time water vapour uptake could be demonstrated in fully winged and flying insects. The critical equilibrium humidities vary considerably among different species ranging from 58 to 85% r.h. Marked interspecific differences are also observed in water loss and uptake rates but no clear correlation with habitat or systematic group is recognizable. The uptake rates of Psocoptera are among the highest of all arthropods investigated so far. From weight recordings with a sensitive microbalance it could be seen that continuous operation of the uptake mechanism is restricted to limited periods of time of less than 1 hr regardless of the water status of the animals. Initiation and termination of the uptake process are abrupt and continuous uptake proceeds at a constant rate at a given relative humidity. Uptake rates are humidity-dependent decreasing with falling relative humidity whereas the adjustment of the equilibrium level of body water is independent of ambient humidity. Equilibrium is maintained by intermittent operation of the uptake mechanism within ca. 3% of body water mass. The uptake mechanism exhibits marked sensitivity to starvation in most members of the Psocomorpha. Some features of the uptake process of Psocoptera are in close agreement with those of Mallophaga reflecting the close relationship between the two groups.  相似文献   

7.
Transpiration rates of young Tamarix aphylla (L.) Karst, plants grown in hydroponics were measured under NaCl- and Cd(NO3)2-stress. Transpiration rates were negatively correlated with the relative humidity of the ambient air at all NaCl concentrations investigated. Low and intermediate concentrations of Cd2+ (45 and 90 μ M , respectively) in the medium caused an increase in transpiration rates. This was particularly pronounced at low levels of relative humidity. At 180 μ M Cd2+, transpiration rates dropped, probably as a result of root damage due to Cd2+ toxicity. Since the transpiration rates differed by a factor of ca 3 between day and night, it is concluded that the stomata did not lose their ability to regulate transpiration under the influence of NaCl or of Cd(NO3)2. The transpiration behaviour of T. aphylla indicates that the effect of water vapour pressure (presented as relative humidity) on the degree of stomatal opening is small. Under conditions of ample water supply transpiration follows the evaporative demand of the ambient air and is influenced by the water uptake capacity of the root system as well as by other environmental factors, e.g. light.  相似文献   

8.
Summary Eggs of birds nesting in wet and dry habitats, have been artificially incubated at controlled humidity white weight loss of the eggs and shell water vapour conductance have been determined. Eggs of species from wet habitats loose weight at a higher rate than those from drier habitats at a given relative humidity.It is suggested that the conductance of the egg shell to water vapour is adapted to the conditions of humidity in the environment such that weight loss varies little (and less than predictable) in relation to the relative humidity at the nesting sites.The relative humidity surrounding eggs during natural incubation was found to be in the range of 30–50% in 4 different species. Humidity in the nest during natural incubation was found to be higher than what would result if ambient air was heated to incubation temperature indicating that the sitting bird conserves humidity around the eggs.  相似文献   

9.
To determine how adult Typhlodromus occidentalis, a mite used in the biological control of spider mites, thrive in arid western North America, the water balance characteristics of adult females were compared to those of a laboratory colony of Amblyseius finlandicus originating from Finnish apple orchards. The mites contained comparable amounts of water (73.6 and 74.9%, respectively, for T. occidentalis and A. finlandicus), absorbed water from the air between 86% and 92% relative humidity (RH) (critical equilibrium humidity) and drank free water from droplets. Typhlodromus occidentalis were distinguished, however, by having lower net water loss rates (0.8% versus 1.3% h–1 at 0% RH, 20°C for A. finlandicus), a feature that enables them to retain water more effectively. Above the critical equilibrium humidity water was lost by adult female T. occidentalis whose mouth parts had been blocked with wax, implying an oral uptake mechanism for the absorption of water vapour. © Rapid Science Ltd. 1998  相似文献   

10.
Measurements of water loss were made on adults of the lesser mealworm, Alphitobius diaperinus, using a recording micro-electrobalance and a programmable heat circulator bath. This species originates in tropical regions and infests poultry houses in temperate countries. Two routes of water loss were examined: the general cuticle and via the spiracles. Temperature and relative humidity of the ambient air substantially affect the cuticular transpiration in adults (fresh body weights from 12 mg to 22 mg). At near 0% R.H., between 20 and 40 degrees C the rate of body water loss gradually increased; on the other hand, the insects gained weight in an atmosphere close to saturation. Above 40 degrees C transpiration flow abruptly increased coinciding with the start of vigorous locomotor activity. This critical point corresponds to the opening of the spiracles from which the water is expelled from the tracheal system.In dead specimens, killed by cyanide or solvent, the water vapour slowly diffused out of the spiracles and, as in atracheate insects, the transpiration curves did not show a peak as the air temperature was increased.The thermostupor point (TSP) occurred as the insects became motionless; the corresponding temperature is significantly affected by atmospheric relative humidity (TSP=47.4+/-0.6 degrees C at c. 0% R.H.; TSP=46.6+/-0.7 degrees C at c. 100% R.H.).The transpiration flow was about four times as fast in specimens treated with solvent as in the individuals (live or cyanide-killed) that had undamaged water-proof cuticle. This species has to cope with a double challenge: (i) to adapt its physiology and ecology to poultry-house conditions which constitutes an extension of its primary habitats, and (ii) to survive over winter; high drought resistance and heat tolerance may constitute a pre-adaptation to conquer anthropogenic air-conditioned sites.  相似文献   

11.
Ward, D. A. and Bunce, J. A. 1986. Novel evidence for a lackof water vapour saturation within the intercellular airspaceof turgid leaves of mesophytic species—J. exp. Bot. 37:504– By utilizing a dual-surface leaf chamber evidence was obtainedsuggesting that the water vapour pressure within the intercellularairspace of turgid leaves of mesophytic species can deviatesignificantly from the saturation vapour pressure at the leaftemperature. When the water vapour pressure of the air surroundingthe lower leaf surface of sunflower was maintained constantand high, suddenly exposing the upper leaf surface to air witha low water vapour content caused the lower leaf surface toexhibit a negative rate of transpiration (i.e. an apparent uptakeof water vapour). Since the vapour pressure of the air surroundingthe lower (moist) surface was less than the saturation vapourpressure at the leaf temperature, the occurrence of negativetranspiration indicated that the vapour pressure of the leafairspace deviated from saturation under the conditions of measurementused. For both soybean and sunflower it was also found that if thehumidity around the upper surface was maintained high and constant,a stepwise decrease in lower surface humidity caused substantialreductions in the transpiration rate and apparent conductanceof the upper surface without any concomitant change in its photosyntheticrate. In contrast, both the photosynthetic rate and conductanceof the lower surface were greatly reduced. The relative reductionsof photosynthetic rate and conductance at the lower surfacewere the same. These responses are most easily explained interms of a deviation from water vapour saturation within theintercellular airspace, which gives rise to spurious valuesof conductance. Key words: Intercellular space, water vapour pressure, turgid, leaves, mesophyte  相似文献   

12.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

13.
Plant response to atmospheric humidity   总被引:15,自引:5,他引:10  
Abstract. Plants growing in environments differing in prevailing humidity exhibit variations in traits associated with regulation of water loss, particularly cuticular and stomatal properties. Expansive growth is also typically reduced by low humidity. Nevertheless, there is little evidence in plants for a specific sensor for humidity, analogous to the blue light or phytochrome photoreceptors. The detailed mechanism of the stomatal response to humidity remains unknown. Available data suggest mediation by fluxes of water vapour, with evaporation rate assuming the role of sensor. This implies that stomata respond to the driving force for diffusional water loss, leaf-air vapour pressure difference. Induction of metabolic stomatal response to humidity may involve signal metabolites, such as abscisic acid, that are present in the transpiration stream. These materials may accumulate in the vicinity of guard cells according to the magnitude and location of cuticular transpiration, both of which could change with humidity. Such a mechanism remains hypothetical, but is suggested to account for feedforward responses in which transpiration decreases with increasing evaporative demand, and for the apparent insensitivity of stomatal aperture in isolated epidermis to epidermal water status. Other responses of plants to humidity may involve similar indirect response mechanisms, in the absence of specific humidity sensors.  相似文献   

14.
The response of leaf water potential to change in transpirationrate was examined in young soybean and cotton plants. Leaf waterpotential measured 1 h after transpiration became constant followinga change in humidity and was constant over a wide range of transpirationrates in both species. However, leaf water potential was notin equilibrium with flow until 3 h after transpiration becameconstant. At equilibrium an increase in transpiration alwaysresulted in a decrease in leaf water potential. It was alsofound that different responses of equilbrium leaf water potentialto transpiration rate occurred depending on whether transpirationwas altered by changing humidity, light intensity, or leaf area.Low light and decreased leaf area caused lower leaf water potentialsfor a given transpiration rate. These increases in root resistancecorrelated with lower rates of root elongation. The data indicatethat shoot-root interactions are occurring which affect apparentroot resistance to water flow, and complicate interpretationof whole plant data on leaf water potential and transpirationin terms of the flow dependence of root hydraulic characteristics.  相似文献   

15.
Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate transpiration rates under infrared heaters and compare these with air warming at constant relative humidity. As infrared heating primarily warms the leaves and not the air, this method increases both the gradient and the conductance for water vapour. Stomatal conductance is determined both independently of vapour pressure differences and as a function thereof, while boundary layer conductance is calculated using several approaches. We argue that none of these approaches is fully accurate, and opt to present results as an interval in which the actual water loss is likely to be found. For typical conditions in a temperate climate, our results suggest a 12–15% increase in transpiration under infrared heaters for a 1 °C warming. This effect decreases when stomatal conductance is allowed to vary with the vapour pressure difference. Importantly, the artefact is less of a concern when simulating heat waves. The higher atmospheric water demand underneath the heaters reflects naturally occurring increases of potential evapotranspiration during heat waves resulting from atmospheric feedback. While air warming encompasses no increases in transpiration, this fully depends on the ability to keep humidity constant, which in the case of greenhouses requires the presence of an air humidification system. As various artefacts have been associated with chamber experiments, we argue that manipulating climate in the field should be prioritized, while striving to limit confounding factors. The excess water loss underneath infrared heaters reported upon here could be compensated by increasing irrigation or applying newly developed techniques for increasing air humidity in the field.  相似文献   

16.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

17.
Stomatal responses to humidity in isolated epidermes   总被引:1,自引:0,他引:1  
The ability of guard cells to hydrate and dehydrate from the surrounding air was investigated using isolated epidermes of Tradescantia pallida and Vicia faba . Stomata were found to respond to the water vapour pressure on the outside and inside of the epidermis, but the response was more sensitive to the inside vapour pressure, and occurred in the presence or absence of living, turgid epidermal cells. Experiments using helium–oxygen air showed that guard cells hydrated and dehydrated entirely from water vapour, suggesting that there was no significant transfer of water from the epidermal tissue to the guard cells. The stomatal aperture achieved at any given vapour pressure was shown to be consistent with water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, and water vapour exchange through the external cuticle appeared to be unimportant for the responses. Although stomatal responses to humidity in isolated epidermes are the result of water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, stomatal responses to humidity in leaves are unlikely to be the result of a similar equilibrium.  相似文献   

18.
The increase in the measured transpiration rate in tobacco leaves due to the experimentally decreased humidity of the bulk air was found to be significantly lower than the theoretical value calculated from the change of water vapour concentration gradients. Boundary layer and stomatal diffusive resistances remained unchanged under experimental conditions with no change of net photosynthetic CO2 uptake. This suggests an increase in intercellular diffusive resistance with an increase in water vapour concentration gradient which is the driving force of water vapour diffusive part of transpiration flux. The increase can be ascribed to the lengthening of intercellular diffusive pathway as steeper water vapour concentration gradient in intercellular spaces results in an increased evaporating surface of intercellular cells thus moving the effective plane of vaporization in leaf mesophyll further inwards. Due to different and independent changes of concentration gradients for water vapour and CO2, different length of intercellular diffusive pathways for CO2 and water vapour may be expected.  相似文献   

19.
Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m?2 s?1 during the dry season to 0.3 mol m?2 s?1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m?2 s?1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.  相似文献   

20.
Co-ordination of vapour and liquid phase water transport properties in plants   总被引:26,自引:7,他引:19  
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号