首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rizvi SS  Altaf S 《Life sciences》2000,67(7):783-797
The present study attempts to examine the role of N-methyl-D-aspartate (NMDA) receptor in the central regulation of growth hormone (GH) secretion during specific stages of pubertal development of the male rhesus monkey (Macaca mulatta). Infantile (n=4), prepubertal (n=5), peripubertal (n=5) and adult (n=5) intact male rhesus monkeys were given an agonist of NMDA receptor, N-methyl-D,L-aspartate (NMA) (15 mg/kg BW) through a teflon cannula implanted in the saphenous vein. Blood samples were collected 20-60 min before and 40-80 min after the injection of the drug at 10-20 min intervals. NMA was dissolved in normal saline immediately before use and passed through a 0.22 microm filter at the time of injection. All bleedings were carried out under ketamine hydrochloride anesthesia (initial dose 5 mg/kg BW, im followed by 2.5 mg/kg at 30 min intervals). The plasma levels of GH and testosterone (T) were determined by using specific assay systems. The hypothalamic-somatotrope activity under basal conditions was studied by averaging all the GH concentrations obtained before NMA injection, whereas the sensitivity of NMDA receptor to NMA stimulation was determined by comparing basal GH levels immediately before NMA injection at 0 min and GH concentrations obtained 10 min after the injection. The mean basal plasma concentrations of GH in the four groups of animals showed marked age-related differences. The levels of GH were found to be higher in infantile and peripubertal monkeys as compared to those of prepubertal and adult animals. A single iv injection of NMA produced differential effects on GH secretion during specific stages of postnatal development depending upon the level of GH secretion under basal conditions. Whereas NMA had no demonstrable effect on GH secretion in infantile and peripubertal animals in which the basal GH levels were high, it produced pronounced effects on GH secretion in prepubertal and adult monkeys wherein baseline GH concentrations were low. In conclusion, the present study suggests that the glutamatergic component of the control system that governs GH secretion by utilizing NMDA receptor may participate in regulation of age-related changes in the secretion of GH in the male rhesus monkey.  相似文献   

2.
Rizvi SS  Altaf S  Naseem AA  Asif M  Rasul Z  Qayyum M 《Life sciences》2001,68(9):1083-1093
The excitatory amino acids (EAAs), glutamate and aspartate, acting predominantly on N-methyl-D-aspartate (NMDA) receptor, have been shown to be involved in the central regulation of the secretion of several anterior pituitary hormones including prolactin (PRL), whereas ketamine hydrochloride (KH), a widely used anesthetic, has been reported to antagonize a variety of NMDA receptor mediated actions of these EAAs. In the present study, the effect of KH on basal PRL levels as well as on N-methyl-D,L-aspartate (NMA), an agonist of NMDA receptor, induced plasma PRL secretion was investigated in the adult male rhesus monkey. The values were compared to those obtained from the same animals restrained in primate chairs. The plasma PRL concentrations were higher in animals receiving KH administered either intramuscularly (2.5 mg/kg BW at 30 min intervals) or intravenously (10 mg/kg BW) as compared to those observed in the unanesthetized chair-restrained monkeys. NMA induced an unequivocal increase in plasma PRL concentrations in both conscious chair-restrained and KH anesthetized monkeys, but the response was greater in anesthetized animals than the conscious monkeys. The present findings suggest that KH has stimulatory effects on both basal and NMA induced plasma PRL secretion.  相似文献   

3.
In the present study, the pituitary growth hormone (GH) response to graded doses of GH-releasing hormone (GHRH) was determined in intact (n = 3) and chronically orchidectomized (n = 3) adult rhesus monkeys (Mucaca mulatta). GHRH in doses of 0, 6.25, 12.5 and 25 microg/kg BW was infused through a teflon cannula implanted in the saphenous vein. Blood samples were collected 60 min before and 90 min after the injection of the neurohormone at 15 min intervals. All bleedings were carried out under ketamine hydrochloride anesthesia. The plasma levels of GH were determined by using AutoDELFIA time-resolved flouroimmunoassay, whereas plasma levels of testosterone and estradiol were determined using specific radioimmunoassay systems. The GH responses to GHRH were not significantly different between intact and chronically orchidectomized monkeys at any of the dose levels tested (p > 0.05). The administration of GHRH resulted in a significant (p < 0.05) stimulation of GH secretion at all the doses tested and in both the groups studied. In both intact and orchidectomized animals, the greatest response was observed at 6.25 microg/kg and no further increase was noted with the higher doses of GHRH. In conclusion, the present study suggests that chronic orchidectomy does not influence the sensitivity of the pituitary somatotropes to GHRH stimulation implying that the responsiveness of the pituitary somatotropes to GHRH is independent of testicular steroid modulation.  相似文献   

4.
To further examine the role of excitatory amino acids in the control of prolactin (PRL) secretion, the effects of administering a specific agonist and an antagonist of the N-methyl-D-aspartate (NMDA) receptor on plasma PRL concentrations were examined in the adult male rat. Animals of the Sprague-Dawley strain weighing 250-300 g were implanted with an indwelling cardiac catheter via the right jugular vein. Blood samples were collected through the catheter at 5 min intervals for 40 min, beginning 5 min before the iv administration of drug or the saline vehicle (V). Plasma PRL and luteinizing hormone (LH) concentrations were estimated using RIAs. Groups of animals (n = 5-7) received N-methyl-D,L-aspartate (NMA), D,L-2-amino-5-phosphonopentanoic acid (AP5), AP5 and NMA, norvaline (NOR), or V. The effects of administering the NMDA receptor antagonist alone were studied on two separate occasions. Injection of NMA (4.5 mg/rat) resulted in unambiguous PRL and LH discharges. Treatment with AP5 (9 mg/rat) 1 min prior to NMA administration completely blocked the LH releasing action of NMA, but did not significantly alter the discharge of PRL. Injection of AP5, alone, generally elicited a distinct and robust discharge of PRL, although plasma LH levels in these animals remained unchanged. NOR, an amino acid structurally related to AP5, administered at a dose (5.3 mg/animal) isomolar to that of AP5, was without effect on PRL and LH secretion, as was injection of V alone. These findings suggest that neuroexcitatory amino acids acting at the NMDA receptor may play a role in modulating the activity of neuronal systems that govern the release of both PRL releasing factor (PRF) and PRL inhibiting factor (PIF) into hypophysial portal blood.  相似文献   

5.
Four orchidectomized rhesus monkeys (3-3.5 yr of age) were treated for 62 days with daily i.m. injections of hydrocortisone acetate (HCA) at a dose of 10-20 mg/(kg BW X day), and blood samples were obtained daily or every other day before, during, and after treatment. Hydrocortisone acetate injections resulted in a progressive rise in mean plasma cortisol from basal concentrations of 17-35 micrograms/100 ml prior to initiation of steroid treatment to approximately 150 micrograms/100 ml 5 wk later. When serum cortisol concentrations reached 100 micrograms/100 ml, 3-4 wk after the initiation of HCA treatment, circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) began to decline, reaching nondetectable concentrations 35 days later. Withdrawal of HCA resulted in a return in plasma cortisol concentrations to pretreatment control levels, which was associated with a complete restoration of gonadotropin secretion. In 2 animals, administration of an intermittent i.v. infusion of gonadotropin-releasing hormone (GnRH) (0.1 micrograms/min for 3 min once every hour), which appears to stimulate the gonadotropes in a physiologic manner, reversed the cortisol-induced inhibition of gonadotropin secretion, restoring circulating LH and FSH concentrations to within 80-100% of control. These results suggest that, in the rhesus monkey, the major site of the inhibitory action of cortisol on gonadotropin release resides at a suprapituitary level and is mediated by interruption of hypothalamic GnRH release.  相似文献   

6.
In ruminant species photoperiod regulates prolactin (PRL) secretion. It is hypothesized that the inhibition of PRL secretion resides in dopaminergic neurons of the medial basal hypothalamus (MBH). To test this hypothesis, anterior (AHD), posterior (PHD) and complete (CHD) hypothalamic deafferentation and sham operation control (SOC) surgeries were carried out during May (long-day photoperiod) in beef heifer calves (6-8 mo old) to measure basal PRL secretion and PRL secretion as affected by intravenous secretagogues. On the day of surgery (day 0), PRL secretion reflected stress of anesthesia and surgery in all groups. Thyrotropin-releasing hormone (TRH), alpha-methyl-rho-tyrosine (alphaMrhoT), and haloperidol (HAL) was iv injected on days 11, 13 and 15, respectively. AHD, PHD, CHD, and SOC calves responded to TRH (100 microg) with an acute increase in PRL that peaked within 20 min. All heifers responded to alphaMrhoT (10 mg/kg BW) with an acute elevation in PRL within 10 min and remaining elevated for 3 h. HAL (0.1 mg/kg BW) induced an acute increase in PRL secretion in all groups, peaking within 15-30 min. Seven months later (December, short-day photoperiod) these heifers were ovariectomized. Basal plasma PRL levels were seasonally low, PRL secretion in AHD, PHD and CHD animals abruptly increased within 15 min to iv injection of 100 microg TRH to a greater amount than seen in SOC heifers. Although a biphasic effect on PRL secretion entrains under long-day and short-day photoperiods, hypothalamic deafferentation in cattle did not affect the pituitary gland's responsiveness to secretagogues.  相似文献   

7.
J T Pan  M H Tai 《Life sciences》1992,51(11):839-845
The effects of ketanserin (Ket), a serotonin (5-HT2) receptor antagonist, on DOI- and mCPP-, two 5-HT agonists, and TRH-induced PRL secretion were studied. Adult female Sprague-Dawley rats ovariectomized for two weeks and treated with a long-acting estrogen, polyestradiol phosphate for one week were used. Drug administration and serial blood sampling were accomplished through indwelling intraatrial catheters which were implanted two days before the experiment. Both DOI (0.5 mg/kg BW) and mCPP (1 mg/kg BW) stimulated prolactin secretion within 10 min after iv injection and the effects were diminished by 30 min. In animals pretreated with Ket (5 mg/kg BW, sc), the effect of DOI was blocked, while that of mCPP was augmented. Co-administration of Ket (1 mg/kg BW, iv) with DOI or mCPP produced similar effect. Pretreatment with Ket, similar to sulpiride (Sulp), a dopamine antagonist, potentiated the TRH-induced prolactin secretion. Co-administration of Ket and Sulp further potentiated the TRH action. It is concluded that Ket not only acts as a 5-HT2 receptor antagonist that blocks the action of DOI, but may also act on dopamine receptor(s) with lower sensitivity to Sulp.  相似文献   

8.
The role and site of action of dopamine in regulating gonadotropin secretion remain unclear. In the present study, we investigated the possibility that dopamine regulates LH secretion by acting directly on the pituitary gland of the rabbit. The effect of dopamine infusion on LHRH-evoked LH release was determined in intact and pituitary stalk sectioned animals. Intravenous injection of LHRH (1 μg) in intact and acutely stalk sectioned rabbits increased peripheral plasma LH levels from a resting value of 0.2 ng/ml to maximal values of 12–14 ng/ml within 10–20 min. When dopamine was infused iv at a dose of 6.6 μg/min/kg BW from 30 min before LHRH injection until 120 min after, the rise in plasma LH levels in intact and stalk sectioned animals was decreased by 50–70%. However, dopamine infused at a lower dose (0.66 μg/min/kg BW) or at a higher dose (66.0 μg/min/kg BW), did not affect the LHRH-induced secretion of LH. These results suggest that dopamine can exert a direct hypophysial inhibitory effect on release of LH. They also demonstrate that dopamine is inhibitory only within a restricted dose-range, extending to the pituitary an established property of dopamine in the cardiovascular system.  相似文献   

9.
The present study attempts to examine the role of N-methyl-D, L-aspartate (NMDA) receptors in the central regulation of prolactin (PRL) secretion, which may be involved in ovarian function and its alteration by glutamate in various phases of the menstrual cycle of female rhesus monkeys (Macaca mulatta). The results suggest that the glutaminergic component of the control system, which governs PRL secretion by utilizing NMDA receptors, may have an important role in regulating changes in PRL secretion. The response of PRL during the luteal phase of the cycle was different from that observed in follicular and menstrual phases. Steroids may influence the NMDA-dependent drive to release PRL. N-methyl-D-aspartic acid (NMA) involvement in the regulation of PRL secretion may occur through activation of the PRL-stimulating system depending on the physiological state or steroidal milieu. It is possible, therefore, that the NMA-induced release of PRL-releasing factors (PRF) and PRL are enhanced in the presence of ovarian feedback.  相似文献   

10.
A potent gonadotropin releasing hormone (GnRH) antagonist [Ac-delta 3Pro1, pFDPhe2, DTrp3,6]-GnRH was given to adult male monkeys to determine the acute effect on pulsatile testosterone and gonadotropin secretion. Blood was drawn at 30 min intervals over 54 h without anesthesia using a mobile vest and tether assembly to support an indwelling catheter. After a 6 h control period, 0.1, 1.0, 2.0, 4.0 mg GnRH antagonist/kg bw in 1 ml corn oil sc, was given to intact adult male monkeys. The highest dose of GnRH antagonist decreased circulating testosterone within 6 h and for approximately 24-36 h duration. These data demonstrate that this GnRH antagonist can reduce serum testosterone both acutely and for intervals greater than 24 h and that the effective dose in intact animals is several-fold (up to 20 times) greater than in castrate animals.  相似文献   

11.
It has previously been described that the growth hormone (GH) releasing effect of clonidine (CLO), an agonist of 2-adrenoreceptors, disappears after orchidectomy and is restored by testosterone replacement when started immediately after orchidectomy. In the present experiments, the effects of CLO on GH release was analysed in long-term (LTO; 12 weeks) and short-term (STO; 2 weeks) orchidectomized rats. In the first experiment, LTO males were implanted with silastic capsules containing testosterone 10 weeks after orchidectomy and killed 2 weeks later, 15 min after injection of CLO (150 μg/kg) or vehicle. In the second experiment, adult males were implanted with testosterone at the moment of orchidectomy and decapitated 2 or 12 weeks later, 15 min after vehicle or CLO administration. In addition, in order to evaluate the effects of orchidectomy and androgen replacement on 2 agonists GH release further, prepubertal males (21-days-old) implanted with testosterone or 5--androstane-3-, 17β diol (-diol) at the moment of orchidectomy were killed 2 weeks later, 15 min after ketamine-xylazine (an 2 agonist) administration. Finally, 10-day-old males (orchidectomized 72 h before) were decapitated 15 min after CLO or vehicle administration. Our results show that: (a) LTO and STO abolished the stimulatory effect of clonidine on GH secretion; (b) orchidectomy also abolished the stimulatory effect of clonidine in neonatal rats and that of xylazine in prepubertal males; (c) testosterone implanted at the moment of orchidectomy prevented the loss of the CLO effect in LTO and STO, but testosterone-delayed administration in LTO was unable to restore the effectiveness of CLO inducing GH release. We conclude that orchidectomy at all ages tested abolishes GH secretion induced by 2 agonists, which suggests that the functionality of -adrenergic receptors involved in the control of GH secretion is critically dependent on a permanent exposure to testosterone in males.  相似文献   

12.
The hypothesis tested was that availability of glucose modulates the control of luteinizing hormone (LH) release. A second objective was to determine the role of testicular hormones in the control of pulsatile LH secretion during depressed blood glucose. Serial blood samples were collected at 15 min intervals for 8 h from intact pubertal Suffolk rams (n = 8; 7 months old) on consecutive days (Days 1, 2 and 3). Rams were castrated after sampling on Day 3 and samples were collected 3 weeks later on consecutive days (Days 4, 5 and 6). Insulin (120 units, iv) was given at Hour 4 of each of the six days to lower blood glucose. On Days 1 and 4, no other treatments were given (Control). On Days 2 and 5, LH releasing hormone (LHRH; 5 ng/kg, iv) was given at Hours 5, 6 and 7 to assess the ability of the pituitary to release LH. On Days 3 and 6, N-methyl-D,L-aspartate (NMA; 5 mg/kg, iv) was given at Hours 5, 6 and 7 to assess the ability of the hypothalamus to release LHRH. Insulin reduced plasma glucose by 52% for at least 3 h (P < 0.001). Insulin reduced the mean LH concentration (P < 0.05) and tended to reduce the LH response area (P < 0.10) in castrated animals during the control period. LHRH increased LH pulse number (P < 0.001) in intact rams and increased mean LH concentration (P < 0.01), LH pulse amplitude (P < 0.05) and LH response area (P < 0.01) in castrated animals compared to respective control periods. NMA increased mean LH concentration in intact rams (P < 0.0001) but did not affect mean LH in castrates. NMA increased LH pulse number in rams (P < 0.0001) but decreased number of pulses in castrates (P < 0.0001) compared to control periods. NMA increased LH pulse amplitude in both intact (P < 0.001) and castrated animals (P < 0.05). In conclusion, these results support the hypothesis that blood glucose concentrations influence the control of LH release in sheep. In addition, LH release in response to the LHRH secretagogue, NMA, is positively influenced by testicular hormones.  相似文献   

13.
The effects of naloxone (Nal) on basal and stress-induced PRL secretion were investigated in intact (N) adult male rats, as were its effects in rats with complete hypothalamic deafferentiation (CHD), in adrenalectomized (adrenX) rats, and in rats pretreated with dexamethasone (dex). Forty-five minutes subsequent to Nal administration (5mg/kg, BW, IP) basal serum levels of PRL were reduced by approximately 25% (p<0.05), in both N and CHD groups. PRL secretory responses to acute exposure to both photic and acoustic stress were markedly attenuated in Nal-injected, as compared to vehicle-injected animals. Basal serum PRL concentrations were elevated by 40% in adrenX rats (p<0.05), as compared to controls. In (p<0.05) in dex-treated rats, as compared to controls. In both these experimental groups, Nal administration caused significant reductions in serum PRL. This study demonstrates that stress-induced, as well as basal PRL secretion, is attenuated by Nal, and points to a hypothalamic site of action in this regard. Furthermore, these Nal effects are independent of glucocorticoid interactions with the CNS.  相似文献   

14.
Does androgen influence prolactin secretion?   总被引:2,自引:0,他引:2  
In both intact and castrated male and female rats, administration of the A-ring reduced androgen, dihydrotestosterone (DHT), consistently failed to stimulate prolactin (PRL) secretion although it inhibited LH release and, in males, stimulated ventral prostate growth. In intact females, but not in the other types of rat, DHT actually suppressed PRL release. These findings do not support generalizations, based entirely on findings with testosterone, that both "androgens" and estrogens exert stimulatory actions on PRL secretion. The distinct stimulatory effects of testosterone and its esters on PRL secretion seem attributable, not to their androgenic actions per se, but to the ability of testosterone to form estrogenic metabolites. This ability does not appear to be shared by the "pure" androgen, DHT.  相似文献   

15.
In this work we analyze the possibility of serotonin (5-HT)-releasing prolactin (PRL) through a direct action at the pituitary level. 5-HT (2 mg/kg i.v.) stimulates PRL secretion in hypophysectomized autotransplanted animals (HAG) significantly and this effect was not influenced by pretreatment with the dopaminergic antagonist domperidone. In perifused pituitaries, 5-HT administration (0.01, 0.1 and 1 microM for 90 min, or 1, 10, 100 microM for 15 min) was ineffective in stimulating PRL release. In pituitaries obtained from animals previously treated with the neurotoxic 5,7-dihydroxytryptamine (5,7-DHT) or vehicle and incubated in the presence of 5-HT (2.5, 5 and 10 microM), no response in PRL secretion was observed. These results suggested that 5-HT does not release PRL through a direct pituitary action, and that the effect observed in HAG animals could be mediated through the release of a PRL-releasing factor after 5-HT administration.  相似文献   

16.
Intracerebroventricular (icv) injection of L-3,4-dihydroxyphenylserine (L-DOPS) (50 and 250 micrograms/rat) raised in a dose-related manner both plasma prolactin (PRL) and CSF norepinephrine (NE) in urethane-anesthetized male rats. Intravenous (iv) injection of larger doses of L-DOPS (5 and 10 mg/100 g BW) slightly but significantly increased plasma PRL and CSF NE. L-DOPS injection (50 micrograms/rat, icv or 5 mg/100 g BW, iv) also raised plasma PRL in conscious rats. There was a good correlation (r = 0.74) between CSF NE and peak plasma PRL in the anesthetized animals. Propranolol (100 micrograms/100 g BW, iv) inhibited plasma PRL responses to L-DOPS (50 micrograms/rat, icv) and NE injection (1 microgram/rat, icv) raised plasma PRL in anesthetized animals. These findings indicate that L-DOPS stimulates PRL secretion via central noradrenergic mechanisms in the rat.  相似文献   

17.
Summary Adult female rhesus monkeys were given cyproterone acetate orally in doses of 0.04, 0.4, 4 and 40mg per kg per day for 12 weeks. Its effects were assessed on serum prolactin (PRL) concentration, the morphology of the PRL cells, and the development of the mammary glands. Serum PRL was relatively unchanged in the control animals from the fourth through the twelfth weeks of the study. In contrast, PRL was significantly elevated in each group of drug-treated animals during the same time periods. There was no development of the mammary glands nor was there any evidence of milk secretion in the control animals; however, in the monkeys given cyproterone acetate the mammary glands had extensive lobuloalveolar growth and milk-like secretion that could be expressed as early as the fourth or fifth week of the study. By immunocytochemistry and differential light microscopic staining techniques, the PRL cells in the pituitary glands of the experimental animals were found to be more numerous and much larger than those present in the controls. They displayed a well developed Golgi complex and had an abundance of cytoplasmic RNA. These data suggest that PRL secretion is markedly enhanced by cyproterone acetate.Supported in part by USPHS Grant AM12583  相似文献   

18.
The effects of intranasal and iv administration of His-D-Trp-Ala-Trp-D-Phe-LysNH2 (GHRP) on plasma GH, PRL, LH, FSH, TSH, cortisol, insulin, IGF-I as well as GHRH-like immunoreactivity (LI) levels were examined in 6 healthy male subjects. An iv bolus injection of GHRP(1 micrograms/kg BW) caused a remarkable increase in plasma GH levels with a mean (+/- SE) peak of 54.9 +/- 4.2-micrograms/L. In addition an intranasal administration of GHRP resulted in a significant, dose-related increase in plasma GH with peaks of 39.6 +/- 15.3 micrograms/L at a dose of 30 micrograms/kg BW, 14.1 +/- 5.0 micrograms/L at 15 micrograms/kg BW and 7.5 +/- 5.7 micrograms/L at 5 microgram/kg BW. Plasma PRL and cortisol levels were slightly but significantly increased after iv administration of GHRP, whereas GHRP totally failed to affect plasma TSH, LH, FSH, insulin, blood sugar and GHRH-LI levels. Seven consecutive, intranasal administrations of 15 micrograms/kg BW GHRP every 8h were well tolerated in all subjects examined. During this treatment, GH responsiveness to GHRP was not attenuated by desensitization and plasma IGF-I was increased from 94.5 +/- 5.8 micrograms/L before GHRP to 125.8 +/- 6.0 micrograms/L after repeated GHRP administration. These findings indicate that intranasal administration of GHRP stimulates GH secretion and consequently enhances IGF-I production in normal subjects. If GHRP is demonstrated to be beneficial in the treatment of some patients with GH deficiency, the intranasal route of administration may be more useful than the painful injection because a prolonged period is required for the treatment.  相似文献   

19.
Hypoglycemia inhibits the hypothalamic-pituitary-gonadal (HPG) axis by still incompletely deciphered mechanisms. Many evidences suggest that the hypoglycemia-induced inhibition of the HPG axis involves alteration of the hypothalamic gonadotropin-releasing hormone (GnRH) release, but neuroendocrine factors responsible for this alteration are yet to be completely elucidated. The current study was carried out to ascertain whether insulin-induced hypoglycemic suppression of the HPG axis involves modulation of responsiveness of the GnRH neuron to kisspeptin and excitatory amino acids (EAA) drives. Five intact chair-restraint habituated adult male rhesus monkeys (Macaca mulatta) were given intravenous boli of GnRH, hCG, human kisspeptin-10 (KP10), NMDA (N-methyl-D, L-aspartate, an EAA analogue), and vehicle in both insulin (1 IU/kg)-induced hypoglycemic (IIH) and normal euglycemic conditions. Specific RIAs were used for measuring plasma cortisol and T concentrations. KP10 and NMDA administration stimulated significantly (p<0.005) T secretion in both euglycemic and hypoglycemic monkeys. Mean post-KP10 T concentrations and AUC were comparable between euglycemic and hypoglycemic monkeys. However, mean post-NMDA T levels and AUC in hypoglycemic animals were significantly lower (p<0.01-0.005) as compared to the corresponding values in euglycemic animals. T response to GnRH and hCG was similar between hypoglycemic and euglycemic monkeys. Vehicle did not affect plasma T concentrations in all conditions. Our results demonstrate that while the primate HPG axis response to kisspeptin stimulation remains intact that to EAA excitation is attenuated in hypoglycemic conditions, suggesting that hypogonadism in IIH is contributed, in part, by reduced sensitivity of the GnRH neurons to EAA signaling in the primate hypothalamus.  相似文献   

20.
Two male adult rhesus monkeys were individually placed in cages with a pulling device in order to immobilize the animals for anesthesia. The room was temperature-controlled having a light/dark period of 12/12 hours. The animals were rapidly immobilized and immediately anesthetized with ketamine i. m. (10 mg/kg of body weight). They were bled four times at 15, 30, 45, and 60 mins after the ketamine injection, twice a week during 6 weeks. When necessary, maintenance doses of ketamine were administered. The levels of serum testosterone in experimental conditions (nasal instillation of female urine or a suspension of vaginal exudate) showed significant lower values with respect to those in control conditions (saline instillation). The control levels of testosterone tend to increase up to 60 mins. The testosterone from samples obtained in experimental conditions did not show such an increase, remaining similar during the sampling and similar to the 15 min control levels that could be considered as basal. These results seem to point out some chemical information from females capable of modifying the pattern of secretion of testosterone of the males in the above mentioned experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号