首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

2.
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.  相似文献   

3.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

4.
Lahti JL  Lui BH  Beck SE  Lee SS  Ly DP  Longaker MT  Yang GP  Cochran JR 《FEBS letters》2011,585(8):1135-1139
Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity.  相似文献   

5.
Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.  相似文献   

6.
7.
The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase (RTK) superfamily and is involved in regulating cell proliferation, differentiation and motility. Growth factor binding induces receptor oligomerization at the plasma membrane, which leads to activation of the intrinsic RTK activity and trans-phosphorylation of tyrosine residues in the intracellular part of the receptor. These residues are docking sites for proteins containing Src homology domain 2 and phosphotyrosine-binding domains that relay the signal inside the cell. In response to EGF attached to beads, lateral propagation of EGFR phosphorylation occurs at the plasma membrane, representing an early amplification step in EGFR signalling. Here we have investigated an underlying reaction network that couples RTK activity to protein tyrosine phosphatase (PTP) inhibition by reactive oxygen species. Mathematical analysis of the chemical kinetic equations of the minimal reaction network detects general properties of this system that can be observed experimentally by imaging EGFR phosphorylation in cells. The existence of a bistable state in this reaction network explains a threshold response and how a high proportion of phosphorylated receptors can be maintained in plasma membrane regions that are not exposed to ligand.  相似文献   

8.
Receptor tyrosine kinases (RTKs) occupy a separate functional niche among membrane receptors, which is determined by the special features of mechanisms of the signal transduction through a cellular membrane. RTKs are involved in the regulation of development and homeostasis of all the tissues of a human organism, playing a central role in cell proliferation, differentiation, and adhesion. A necessary condition of the biochemical signal transduction through a plasmatic membrane is a ligand-dependent or a ligand-independent dimerization (and/or an oligomerization) of RTKs which is accompanied by conformational rearrangements of all the RTK domains, including the α-helical transmembrane segments. In this review, the main aspects of structure-function relationship for RTKs from various receptor subfamilies are briefly discussed. It is shown in the light of the recently obtained biophysical and biochemical data that functioning of RTK receptors is mediated not only by protein–protein interactions, but by the state of the lipid environment as one of the main components of a self-consistent signal transduction system as well. The new principles of intercellular signal transduction through a membrane replenish the molecular mechanisms of the RTK functioning that have been earlier proposed and explain a number of paradoxes which are observed upon activation of wild-type receptors and the receptors with pathogenic transmembrane mutations. Understanding of the complex mechanisms of the signaling processes can facilitate the successful search for new opportunities of influence on the RTK biological functions with potential therapeutic consequences.  相似文献   

9.
Spatial regulation of EGFR signaling by Sprouty2   总被引:3,自引:0,他引:3  
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates multiple signal-transduction pathways as well as trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. Although there is growing awareness that endocytic transport can play a direct role in signal specification, relatively little is known about the molecular mechanisms underlying this link. Here we show that human Sprouty 2 (hSpry2), a protein that has been implicated in the negative regulation of receptor tyrosine kinase (RTK) signaling [1], interferes with the trafficking of activated EGFR specifically at the step of progression from early to late endosomes. This effect is mediated by the binding of hSpry2 to the endocytic regulatory protein, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), and leads to a block in intracellular signal propagation. These observations suggest that EGFR signaling is controlled by a novel mechanism involving trafficking-dependent alterations in receptor compartmentalization.  相似文献   

10.
The ubiquitin ligase Cbl mediates ubiquitination of activated receptor tyrosine kinases (RTKs) and interacts with endocytic scaffold complexes, including CIN85/endophilins, to facilitate RTK endocytosis and degradation. Several mechanisms regulate the functions of Cbl to ensure the fine-tuning of RTK signalling and cellular homeostasis. One regulatory mechanism involves the binding of Cbl to Sprouty2, which sequesters Cbl away from activated epidermal growth factor receptors (EGFRs). Here, we show that Sprouty2 associates with CIN85 and acts at the interface between Cbl and CIN85 to inhibit EGFR downregulation. The CIN85 SH3 domains A and C bind specifically to proline-arginine motifs present in Sprouty2. Intact association between Sprouty2, Cbl and CIN85 is required for inhibition of EGFR endocytosis as well as EGF-induced differentiation of PC12 cells. Moreover, Sprouty4, which lacks CIN85-binding sites, does not inhibit EGFR downregulation, providing a molecular explanation for functional differences between Sprouty isoforms. Sprouty2 therefore acts as an inducible inhibitor of EGFR downregulation by targeting both the Cbl and CIN85 pathways.  相似文献   

11.
Met and EGF receptor (EGFR) activation is correlated with dissociation of cell-cell adhesion and with increase in mobility of cancer cells. E-cadherin is a major protein of adhesion junctions. Using different approaches we have shown that EGF receptors intracellular localization depends of E-cadherin function. It was found that EGFR localized on the membrane in HT-29 cells which formed mature cell-cell contacts. Moreover, EGFR was colocalized with E-cadherin at the site of cell-cell adhesion in Triton-insoluble fraction. EGFR was accumulated preliminary in cytosol in E-cadherin negative HBL-100 cells. Study of signal transduction mediated by EGF and HGF in cells with different state of cell adhesion demonstrated that E-cadherin could affect ERK-signal-duration. Our preliminary studies proposed that mislocalization of Met and EGFR in E-cadherin negative cells altered receptors downstream signaling.  相似文献   

12.
13.
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.  相似文献   

14.
Guidance receptors detect extracellular cues and instruct migrating cells how to orient in space. Border cells perform a directional invasive migration during Drosophila oogenesis and use two receptor tyrosine kinases (RTKs), EGFR and PVR (PDGF/VEGF Receptor), to read guidance cues. We find that spatial localization of RTK signaling within these migrating cells is actively controlled. Border cells lacking Cbl, an RTK-associated E3 ubiquitin ligase, have delocalized guidance signaling, resulting in severe migration defects. Absence of Sprint, a receptor-recruited, Ras-activated Rab5 guanine exchange factor, gives related defects. In contrast, increasing the level of RTK signaling by receptor overexpression or removing Hrs and thereby decreasing RTK degradation does not perturb migration. Cbl and Sprint both regulate early steps of RTK endocytosis. Thus, a physiological role of RTK endocytosis is to ensure localized intracellular response to guidance cues by stimulating spatial restriction of signaling.  相似文献   

15.
16.
Transmembrane proteins of the tetraspanin superfamily are associated with integrins and are thought to regulate adhesion-dependent signaling. The molecular mechanisms of this regulation remain unknown. We used rat fibroblasts to analyze the contribution of the tetraspanin CD151 in the adhesion-dependent signaling. Expression of CD151 specifically attenuated adhesion-dependent activation of Ras. Furthermore, activation of PKB/c-Akt and ERK1/2, downstream targets in the Ras signaling pathway, was also diminished in cells expressing CD151. In contrast, adhesion-dependent activation of FAK and c-Src were not affected by CD151. The attenuation of Ras signaling did not correlate with phosphorylation of Tyr925-FAK, tyrosine phosphorylation of Shc, or with assembly of the p120RasGAP-p62Dok complex. Using mutants of CD151 we established that the cytoplasmic C-terminal portion is critical for activity of CD151 toward Ras. Taken together these results identify CD151 as a negative regulator of Ras and suggest a novel mechanism of adhesion-dependent regulation of Ras activity.  相似文献   

17.
Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.  相似文献   

18.
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.  相似文献   

19.
E-cadherin binding modulates EGF receptor activation   总被引:1,自引:0,他引:1  
We found that E-cadherin and epidermal growth factor receptor (EGFR) are associated in mammary epithelial cells and that E-cadherin engagement in these cells induces transient activation of EGFR, as previously seen in keratinocytes (37). In contrast, EGFR does not associate with and is not activated by N-cadherin. Analysis of cells expressing chimeric cadherins revealed that the extracellular domain of E-cadherin is required for interaction with and activation of EGFR. This activation results in tyrosine phosphorylation of known EGFR substrates and reduction in focal adhesions. These interactions, however, are not necessary for suppression of cell motility by E-cadherin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号