首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kallistatin is a heparin-binding serine proteinase inhibitor (serpin), which specifically inhibits human tissue kallikrein by forming a covalent complex. The inhibitory activity of kallistatin is blocked upon its binding to heparin. In this study we attempted to locate the heparin-binding site of kallistatin using synthetic peptides derived from its surface regions and by site-directed mutagenesis of basic residues in these surface regions. Two synthetic peptides, containing clusters of positive-charged residues, one derived from the F helix and the other from the region encompassing the H helix and C2 sheet of kallistatin, were used to assess their heparin binding activity. Competition assay analysis showed that the peptide derived from the H helix and C2 sheet displayed higher and specific heparin binding activity. The basic residues in both regions were substituted to generate three kallistatin double mutants K187A/K188A (mutations in the F helix) and K307A/R308A and K312A/K313A (mutations in the region between the H helix and C2 sheet), using a kallistatin P1Arg variant as a scaffold. Analysis of these mutants by heparin-affinity chromatography showed that the heparin binding capacity of the variant K187A/K188A was not altered, whereas the binding capacity of K307A/R308A and K312A/K313A mutants was markedly reduced. Titration analysis with heparin showed that the K312A/K313A mutant has the highest dissociation constant. Like kallistatin, the binding activity of K187A/K188A to tissue kallikrein was blocked by heparin, whereas K307A/R308A and K312A/K313A retained significant binding and inhibitory activities in the presence of heparin. These results indicate that the basic residues, particularly Lys(312)-Lys(313), in the region between the H helix and C2 sheet of kallistatin, comprise a major heparin-binding site responsible for its heparin-suppressed tissue kallikrein binding.  相似文献   

2.
The contribution of Arg(129) of the serpin, antithrombin, to the mechanism of allosteric activation of the protein by heparin was determined from the effect of mutating this residue to either His or Gln. R129H and R129Q antithrombins bound pentasaccharide and full-length heparins containing the antithrombin recognition sequence with similar large reductions in affinity ranging from 400- to 2500-fold relative to the control serpin, corresponding to a loss of 28-35% of the binding free energy. The salt dependence of pentasaccharide binding showed that the binding defect of the mutant serpin resulted from the loss of approximately 2 ionic interactions, suggesting that Arg(129) binds the pentasaccharide cooperatively with other residues. Rapid kinetic studies showed that the mutation minimally affected the initial low affinity binding of heparin to antithrombin, but greatly affected the subsequent conformational activation of the serpin leading to high affinity heparin binding, although not enough to disfavor activation. Consistent with these findings, the mutant antithrombin was normally activated by heparin for accelerated inhibition of factor Xa and thrombin. These results support an important role for Arg(129) in an induced-fit mechanism of heparin activation of antithrombin wherein conformational activation of the serpin positions Arg(129) and other residues for cooperative interactions with the heparin pentasaccharide so as to lock the serpin in the activated state.  相似文献   

3.
Hepatocyte growth factor (HGF) is a heparin-binding, multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. Heparin or closely related heparan sulfate has profound effects on HGF signaling. A heparin-binding site in the N-terminal (N) domain of HGF was proposed on the basis of the clustering of surface positive charges [Zhou, H., Mazzulla, M. J., Kaufman, J. D., Stahl, S. J., Wingfield, P. T., Rubin, J. S., Bottaro, D. P., and Byrd, R. A. (1998) Structure 6, 109-116]. In the present study, we confirmed this binding site in a heparin titration experiment monitored by nuclear magnetic resonance spectroscopy, and we estimated the apparent dissociation constant (K(d)) of the heparin-protein complex by NMR and fluorescence techniques. The primary heparin-binding site is composed of Lys60, Lys62, and Arg73, with additional contributions from the adjacent Arg76, Lys78, and N-terminal basic residues. The K(d) of binding is in the micromolar range. A heparin disaccharide analogue, sucrose octasulfate, binds with similar affinity to the N domain and to a naturally occurring HGF isoform, NK1, at nearly the same region as in heparin binding. (15)N relaxation data indicate structural flexibility on a microsecond-to-millisecond time scale around the primary binding site in the N domain. This flexibility appears to be dramatically reduced by ligand binding. On the basis of the NK1 crystal structure, we propose a model in which heparin binds to the two primary binding sites and the N-terminal regions of the N domains and stabilizes an NK1 dimer.  相似文献   

4.
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.  相似文献   

5.
T Koide  D Foster  S Odani 《FEBS letters》1986,194(2):242-244
A high degree of sequence homology has been found between the N-terminal region of histidine-rich glycoprotein (HRG) and that of antithrombin III (AT III) where the putative heparin-binding site of AT III is located. The amino acid residue at the position corresponding to Arg-47 of AT III that is essential for the heparin-binding was also arginine (Arg 23 and 78) in the homologous sequences of HRG. These observations strongly suggest that the heparin-binding sites of HRG and AT III are evolutionarily related. There was no apparent sequence similarity between the remaining about 70% portions of the two proteins.  相似文献   

6.
7.
A new water-soluble color reagent, 4-N,N-dimethylaminoazobenzene-4'-isothiocyano-2'-sulfonic acid (S-DABITC), was used to identify lysine residues of antithrombin III which participate in the binding of heparin. Antithrombin, modified with S-DABITC in the presence and absence of low molecular weight heparin (Mr 5000) was reduced, carboxymethylated, and digested with trypsin. The digest was analyzed by high-performance liquid chromatography and monitored at 465 nm. In the absence of heparin, four major colored peptides (T1, T2, T3, and T4) were identified. When antithrombin was preincubated with heparin (2-fold by weight), followed by S-DABITC modification, the recovery of peptide T4 remained unchanged, but the recoveries of T1, T2, and T3 were reduced by 93, 86, and 98%, respectively. In addition, a new colored peptide, TA, appeared. Amino acid sequencing of peptides T1, T2, T3, and TA localized S-DABITC modification sites as Lys-136, Lys-125, Lys-107, and Lys-236, respectively. Thus, binding of heparin to human antithrombin diminished S-DABITC modification at Lys-107, Lys-125, and Lys-136, but at the same time enhanced S-DABITC modification at Lys-236. This phenomenon was further characterized by varying the molar ratio of heparin/antithrombin (from 0.04 to 20). The shielding of Lys-125 and Lys-136 was inversely proportional to the activation of Lys-236. At a heparin/antithrombin molar ratio of 1, the extent of shielding of Lys-125 and Lys-136 and the unmasking of Lys-236 were 25-33%. This shielding-unmasking effect correlated with enhanced antithrombin inhibition of thrombin. We conclude that Lys-107, Lys-125, and Lys-136 are situated within the heparin-binding site of human antithrombin and that binding of heparin to antithrombin causes a conformational change of antithrombin that leads to the exposure of Lys-236 for S-DABITC modification.  相似文献   

8.
A heparin-binding peptide within antithrombin III (ATIII) was identified by digestion of ATIII with Staphylococcus aureus V8 protease followed by purification on reverse-phase high pressure liquid chromatography using a C-4 column matrix. The column fractions were assayed for their ability to bind heparin by ligand blotting with 125I-fluoresceinamine-heparin as previously described (Smith, J. W., and Knauer, D. J. (1987) Anal. Biochem. 160, 105-114). This analysis identified at least three fractions with heparin binding ability of which the peptide eluting at 25.4 min gave the strongest signal. Amino acid sequence analysis of this peptide gave a partially split sequence which was consistent with regions encompassing amino acids 89-96 and 114-156. These amino acids are present in a 1:1 molar ratio which is consistent with a disulfide linkage between Cys-95 and Cys-128. High affinity heparin competed more effectively for the binding of 125I-fluoresceinamine-heparin to this peptide than low affinity heparin. Chondroitin sulfate did not block the binding of 125I-fluoresceinamine-heparin to the peptide. These data strongly suggest that the isolated peptide represents a native heparin-binding region within intact ATIII. Computer generation of a plot of running charge density of ATIII confirms that the region encompassing amino acid residues 123-141 has the highest positive charge density within the molecule. A hydropathy plot of ATIII was generated using a method similar to that of Kyte and Doolittle (Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132). This plot indicates that amino acid residues 126-140 are exposed to the exterior surface of the molecule. Based on these data, we suggest that the region corresponding to amino acid residues 114-156 is a likely site for the physiological heparin-binding domain of ATIII. We also conclude that the proposed disulfide bridges within the protein are suspect and should be re-examined (Petersen, T. E., Dudek-Wojiechowska, G., Sottrup-Jensen, L., and Magnussun, S. (1979) in The Physiological Inhibitors of Coagulation and Fibrinolysis (Collen, D., Wiman, B., and Verstaeta, M., eds) pp. 43-54, Elsevier Scientific Publishing Co., Amsterdam).  相似文献   

9.
Four monoclonal antibodies with distinct epitopes were prepared against antithrombin III. None of them is directed against the heparin-binding region nor the active site, yet two mAb namely A36 and B108, interfere with antithrombin III inhibition of thrombin. The epitope of monoclonal antibody A36 is located within amino acid residues 1-393, at a site different from the active site since it recognizes antithrombin III and antithrombin-III-thrombin complexes with the same affinity. A36 partially prevents the intrinsic antithrombin III activity and has no effect on the heparin-enhanced antithrombin III activity when added to the antithrombin-III--heparin complex. If A36 is first reacted with antithrombin III and then heparin is added to the reaction mixture, A36 fixes the conformation of antithrombin III so that heparin binds to antithrombin III, but is not able to induce the conformational change in the antithrombin III molecule required for the enhanced activity. The epitope for monoclonal antibody B108 is located within residues 282-393, close to the active site. It does not recognize antithrombin-III-thrombin complexes by solid-phase radioimmunoassay. Its binding to antithrombin III induces a conformational change that enhances antithrombin III activity in a manner that resembles the heparin effect, but its effect is additive to the heparin effect, since when it was added to a reaction mixture which contained a saturating amount of heparin, inhibition of thrombin was enhanced. The epitope for monoclonal antibody A5 is located within residues 1-393, and its recognition of antithrombin III or antithrombin-III-thrombin is strongly dependent on the integrity of the disulfide bonds. A5 has no effect on antithrombin III activities. The epitope for monoclonal antibody A10 is well defined within a narrow range of 55 amino acid residues, 339-393, on the antithrombin III molecule, close to the active site, yet it has no effect on antithrombin III inhibitory activity. These monoclonal antibodies may be developed for various diagnostic or clinical purposes and offer a powerful tool for studying the conformational changes and structure/activity relationships in the antithrombin III molecule.  相似文献   

10.
Tenascin-X is known as a heparin-binding molecule, but the localization of the heparin-binding site has not been investigated until now. We show here that, unlike tenascin-C, the recombinant fibrinogen-like domain of tenascin-X is not involved in heparin binding. On the other hand, the two contiguous fibronectin type III repeats b10 and b11 have a predicted positive charge at physiological pH, hence a set of recombinant proteins comprising these domains was tested for interaction with heparin. Using solid phase assays and affinity chromatography, we found that interaction with heparin was conformational and involved both domains 10 and 11. Construction of a three-dimensional model of domains 10 and 11 led us to predict exposed residues that were then submitted to site-directed mutagenesis. In this way, we identified the basic residues within each domain that are crucial for this interaction. Blocking experiments using antibodies against domain 10 were performed to test the efficiency of this site within intact tenascin-X. Binding was significantly reduced, arguing for the activity of a heparin-binding site involving domains 10 and 11 in the whole molecule. Finally, the biological significance of this site was tested by cell adhesion studies. Heparan sulfate cell surface receptors are able to interact with proteins bearing domains 10 and 11, suggesting that tenascin-X may activate different signals to regulate cell behavior.  相似文献   

11.
X J Sun  J Y Chang 《Biochemistry》1990,29(38):8957-8962
Arginyl residues of human antithrombin III have been implicated to involve in the heparin binding site [Jorgensen, A. M., Borders, C. L., & Fish, W. W. (1985) Biochem, J. 231, 59-63]. We have performed chemical modification of antithrombin with (p-hydroxyphenyl)glyoxal (HPG) in order to determine the locations of these arginine residues. Antithrombin was modified with 12 mM HPG in the absence and presence of heparin (2-fold by weight to antithrombin). In the absence of heparin, about 3-4 mol of arginines/mol of antithrombin were modified within 60 min, and the modification led to the loss of 95% of the inhibitor's heparin cofactor activity as well as heparin-induced fluorescence enhancement and 50% of its progressive inhibitory activity. In the presence of heparin, the extent of modification was diminished by 30% and modified antithrombin retained approximately 70% of its heparin cofactor activity. Peptide mapping and subsequent sequence analysis revealed that selective HPG modification occurred at Arg129 and Arg145 and that their modifications were protected upon binding of heparin to antithrombin. We conclude that Arg129 and Arg145 are situated within the heparin binding site of human antithrombin III.  相似文献   

12.
Antithrombin Northwick Park and antithrombin Glasgow are functionally variant antithrombins with impaired abilities to interact with thrombin. Thrombosis is associated with their inheritance. Both of the purified, reduced, and S-carboxymethylated variant antithrombins were treated with cyanogen bromide and the major pools of each containing the amino acid sequence Gly339-Met423 were isolated. Following treatment of these pools with trypsin, fast atom bombardment mass spectrometry identified tryptic peptides (found also in normal antithrombin treated in the same way) that corresponded to amino acid sequences Gly339-Lys370 and Val400-Met423. The tryptic peptides, corresponding to amino acid sequences Ala371-Arg393 and Ser394-Arg399 were present in both variant preparations in greatly reduced amounts compared to a normal antithrombin preparation. However, two novel tryptic peptides of molecular mass (M + H)+ 2976 and 2952 were identified in the digests of antithrombin Northwick Park and Glasgow, respectively. Further analyses of these novel tryptic peptides were carried out by V8 protease treatment and sequential Edman degradation coupled with mass spectrometric analysis of the shortened peptides. This established that these peptides comprised the amino acid sequence Ala371-Arg399, but with single amino acid substitutions at the reactive site, Arg393 replaced by Cys (in antithrombin Northwick Park) and by His (in antithrombin Glasgow).  相似文献   

13.
The access of bone morphogenetic protein (BMP) to the BMP receptors on the cell surface is regulated by its antagonist noggin, which binds to heparan-sulfate proteoglycans on the cell surface. Noggin is encoded by NOG and mutations in the gene are associated with aberrant skeletal formation, such as in the autosomal dominant disorders proximal symphalangism (SYM1), multiple synostoses syndrome, Teunissen–Cremers syndrome, and tarsal–carpal coalition syndrome. NOG mutations affecting a specific function may produce a distinct phenotype. In this study, we investigated a Japanese pedigree with SYM1 and conductive hearing loss and found that it carried a novel heterozygous missense mutation of NOG (c.406C > T; p.R136C) affecting the heparin-binding site of noggin. As no mutations of the heparin-binding site of noggin have previously been reported, we investigated the crystal structure of wild-type noggin to investigate molecular mechanism of the p.R136C mutation. We found that the positively charged arginine at position 136 was predicted to be important for binding to the negatively charged heparan-sulfate proteoglycan (HSPG). An in silico docking analysis showed that one of the salt bridges between noggin and heparin disappeared following the replacement of the arginine with a non-charged cysteine. We propose that the decreased binding affinity of NOG with the p.R136C mutation to HSPG leads to an excess of BMP signaling and underlies the SYM1 and conductive hearing loss phenotype of carriers.  相似文献   

14.
Identification of two novel arginine binding DNAs.   总被引:5,自引:0,他引:5       下载免费PDF全文
K Harada  A D Frankel 《The EMBO journal》1995,14(23):5798-5811
RNA tertiary structure is known to play critical roles in RNA-protein recognition and RNA function. To examine how DNA tertiary structure might relate to RNA structure, we performed in vitro selection experiments to identify single-stranded DNAs that specifically bind arginine, and compared the results with analogous experiments performed with RNA. In the case of RNA, a motif related to the arginine binding site in human immunodeficiency virus TAR RNA was commonly found, whereas in the case of DNA, two novel motifs and no TAR-like structures were found. One DNA motif, found in approximately 40% of the cloned sequences, forms of hairpin structure with a highly conserved 10 nucleotide loop, whereas the second motif is especially rich in G residues. Chemical interference and mutagenesis experiments identified nucleotides in both motifs that form specific arginine binding sites, and dimethylsulfate footprinting experiments identified single guanine residues in both that are protected from methylation in the presence of arginine, suggesting possible sites of arginine contact or conformational changes in the DNAs. Circular dichroism experiments indicated that both DNAs undergo conformational changes upon arginine binding and that the arginine guanidinium group alone is responsible for binding. A model for the G-rich motif is proposed in which mixed guanine and adenine quartets may form a novel DNA structure. Arginine binding DNAs and RNAs should provide useful model systems for studying nucleic acid tertiary structure.  相似文献   

15.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

16.
Glutamine:fructose-6-phosphate amidotransferase (Gfat) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway. The increasing amount of evidence that links excess hexosamine biosynthesis with pathogenic complications of type II diabetes highlights the need to understand the regulation of Gfat. Previous studies showed that eukaryotic Gfat is subjected to feedback inhibition by UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) and to phosphorylation by cAMP-activated protein kinase A (PKA). In this study, overexpression of human Gfat isoform 1 (hGfat1) in insect cells revealed that hGfat1 is phosphorylated in vivo. Using matrix-assisted laser desorption/ionization and electrospray tandem mass spectrometry, we have identified Ser243 as a novel phosphorylation site. Biochemical properties of the wild type and the Ser243Glu mutant of hGfat1 overexpressed in Escherichia coli were compared. Our results provide evidence that phosphorylation at Ser243 stimulates glucosamine 6-phosphate-synthesizing activity, lowers amidohydrolyzing activity in the absence of fructose 6-phosphate (F6P) (glutaminase activity), and lowers Km(F6P) 2-fold, but has no effect on UDP-GlcNAc inhibition. On the basis of the sequence consensus, AMP-activated protein kinase and calcium/calmodulin-dependent kinase II were identified to phosphorylate specifically Ser243 in vitro. Phosphorylation by these two kinases results in an increase of enzymatic activity by 1.4-fold. These findings suggest for the first time that hGfat1 may be regulated by kinases other than PKA.  相似文献   

17.
A peptide model for the heparin binding site of antithrombin III (ATIII) was synthesized to elucidate the structural consequences of heparin binding. This peptide [ATIII(123-139)] and a sequence-permuted analogue (ATIII random) showed similar conformational behavior (as analyzed by circular dichroism spectroscopy) in aqueous and organic media. In the presence of heparin, however, the peptide ATIII(123-139) assumed a stable conformation, whereas peptide ATIII random did not. Complex formation was saturable and sensitive to salt. The ATIII(123-139)-heparin complex contained beta-structure, rather than helical structure. This finding is incompatible with current models of heparin binding and suggests that heparin binding may induce nonnative structures at the binding site which could, in turn, lead to activation of ATIII. The peptide ATIII(123-139) was able to inhibit the binding of ATIII by heparin, consistent with the notion that this peptide may be a model for the heparin binding site.  相似文献   

18.
We have shown previously that a deletion mutant of human heparin-binding growth factor (HBGF)-1, HBGF-1U, lacking the sequence Asn-Tyr-Lys-Lys-Pro-Lys-Leu is capable of initiating c-fos mRNA expression and polypeptide phosphorylation on tyrosine residues at concentrations that do not induce either DNA synthesis or cell proliferation (1). The fact that addition of the nuclear translocation signal from the yeast histone 2B protein to the HBGF-1U mutant caused reconstitution of the biological activity of HBGF-1 indicated that nuclear translocation may be an important component of the mitogenic signal induced by HBGF-1. In order to examine the nuclear translocation potential of HBGF-1 alpha, the deletion mutant HBGF-1U, and the yeast histone 2B-HBGF-1 chimera, HBGF-1U2, we expressed these forms of HBGF-1 in murine endothelial cells. Western blot and two-dimensional Western blot analysis of cytosol and nuclei demonstrate that although the three forms of HBGF-1 are readily detectable in the cytosol of the individual transfectants, HBGF-1 alpha and HBGF-1U2 but not HBGF-1U was detected in the nucleus. Furthermore, murine endothelial cells expressing HBGF-1 alpha and HBGF-1U2 exhibited an atypical cellular phenotype in vitro that was absent in the HBGF-1U transfectants. These data suggest that HBGF-1 contains a functional nuclear translocation sequence that may be responsible for the initiation of DNA synthesis, and these data further correlate the presence of the nuclear translocation sequence with an abnormal endothelial cell phenotype in vitro.  相似文献   

19.
Antithrombin is a plasma protein inhibitor that can be grouped within a serine proteinase inhibitor superfamily. Antithrombin Pescara is a functional variant of antithrombin found in a family with a high incidence of thrombosis. Preliminary functional analysis has suggested that the abnormality resides in the reactive site rather than in the heparin binding domain of the molecule. Accordingly, we have isolated the variant from plasma using heparin-Sepharose chromatography, followed by chromatography upon thrombin-Sepharose to remove the normal antithrombin that is present (the propositus is heterozygous for the variant). The variant protein was reduced, S-carboxy-methylated, and fragmented with CNBr. A pool ("CNBr pool 4") containing the reactive site region was isolated by reverse-phase high performance liquid chromatography and sequentially treated with trypsin and V8 protease. Fast atom bombardment-mass spectrometric analysis of this subdigest identified a novel peptide of mass 1708. Four steps of Edman degradation together with further analysis by fast atom bombardment-mass spectroscopy identified the NH2-terminal sequence of this peptide as Ala-Ala-Ala-Ser. The mass of the novel peptide and its changing mass in response to Edman degradation are only compatible with its identity as Ala382-Arg399, with the reactive site Arg393 replaced by Pro. Using specific oligonucleotide hybridization, we demonstrated that the molecular defect of antithrombin Pescara is caused by a CGT to CCT mutation in codon 393. These findings may be of broad interest, as other members of the serine protease inhibitor superfamily contain arginine at their reactive sites and may be expected to undergo a similar mutation.  相似文献   

20.
The extracellular matrix molecule fibronectin (FN) is a glycoprotein whose major functional property is to support cell adhesion. FN contains at least two distinct cell-binding domains: the central cell-binding domain and the HepII/IIICS region. The HepII region comprises type III repeats 12-14 and contains proteoglycan-binding sites, while the alternatively spliced IIICS segment possesses the major alpha4beta1 integrin-binding sites. Both cell surface proteoglycans and integrins are important for mediating the adhesion of cells to this region of FN. By comparing heparin binding to different recombinant splice variants of the HepII/IIICS region, evidence was obtained for the existence of a novel heparin-binding site in the centre of the IIICS. Site-directed mutagenesis of basic amino acid sequences in this region reduced heparin binding to recombinant HepII/IIICS proteins and, in conjunction with mutations in the HepII region, caused a synergistic loss of activity. Using the H/120 variant of FN, which contains type III repeats 12-15 and the full-length IIICS region, and the H/95 variant of FN, which contains type III repeats 12-15 but lacks the high affinity integrin-binding LDV sequence, the relative roles played by cell-surface proteoglycans and integrins in mediating cell adhesion have been investigated. This was achieved by studying the effects of anti-integrin antibodies and exogenous heparin on A375 melanoma cell attachment to the wild-type and three different mutants of H/120 and H/95 in which the potential proteoglycan-binding sites were partially or completely removed. A375 cell adhesion to H/120 and its mutants was found to involve the co-operative action of both integrin and cell-surface proteoglycan binding, although integrin made a dominant contribution. Anti-integrin antibodies and exogenous heparin were capable of inhibiting melanoma cell adhesion to H/95 and in this case adhesion was due primarily to cell-surface proteoglycan and not integrin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号