首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study was designed to determine the effect of essential hypertension on peripheral glucose metabolism during the postabsorptive state and after an oral glucose challenge. Ten normal subjects and nine patients with essential hypertension were studied after an overnight fast (12-14 h) and for 3 h after the ingestion of 75 g of glucose. Peripheral glucose metabolism was analyzed by the forearm technique to estimate muscle exchange of substrate combined with indirect calorimetry. Decreased forearm glucose uptake was observed in hypertensive patients compared to normal subjects (4.9+/-0.6 vs. 8.6+/-0.5 mmol x 100 ml forearm(-1) x 3 h(-1)) with diminished nonoxidative glucose metabolism (2.7+/-0.5 vs. 6.9+/-0.6 mmol x 100 ml forearm(-1) x 3 h(-1)). Muscle glucose oxidation did not differ significantly between groups. Both serum free fatty acid levels and lipid oxidation rates were similar in the normal subjects and the hypertensive patients, and declined in a similar fashion after glucose ingestion. Basal serum insulin levels did not differ significantly between normal and hypertensive patients, whereas the insulinemic response to glucose load was greater among the patients with essential hypertension. These data show that insulin resistance occurring in patients with essential hypertension is accompanied by impaired muscle glucose uptake and nonoxidative metabolism.  相似文献   

2.
The insulin resistance of 4 nonobese and 8 obese patients with polycystic ovaries, hirsutism and benign acanthosis nigricans, and of 6 'obese normal' apart from obesity and 10 normal female subjects was evaluated by means of an intravenous insulin tolerance test and by measuring basal and insulin responses to an oral glucose load. The patients with polycystic ovaries, hirsutism and acanthosis had a decreased hypoglycemic response to exogenous insulin. The subjects with polycystic ovaries presented a significantly greater mean glucose response area for the same or greater mean insulin response area than the obese or nonobese normal subjects. The insulin resistance in the patient with polycystic ovaries, hirsutism and acanthosis nigricans could not be exclusively ascribed to a reduced receptor number, but also appeared to be due to a simultaneous postbinding defect probably related to the high insulin levels in patients with polycystic ovaries be they obese or not. The elevated plasma androgens and the presence of acanthosis found in these patients are likely also related to the hyperinsulinemia. To evaluate the influence of obesity, obese and nonobese patients with acanthosis nigricans and polycystic ovaries were compared. Higher insulin levels were found in the thin subjects, which could explain their greater insulin resistance and more severe hyperandrogenism. The comparison between obese patients with and those without acanthosis nigricans and polycystic ovaries suggested that, despite similar insulin levels, the greater known duration of obesity (probably also of the hyperinsulinemia) of the former was a possible explanation for their more intense insulin resistance and higher testosterone levels.  相似文献   

3.
The present study was designed to determine the effects of metformin on the forearm glucose uptake and blood flow after an oral glucose challenge. Eleven normal subjects, and ten non-obese type 2 diabetes patients without medication of anti-hyperglycemic drug and with medication of metformin for four weeks, were studied after an overnight fast (12-14 h) and 3 hours after ingestion of 75 g of glucose. Peripheral glucose metabolism was analyzed by the forearm technique combined with indirect calorimetry. The forearm glucose uptake increased in diabetes patients taking metformin (63.5+/-9.1 VS. 39.1+/-5.3 mg/100 ml FA. 3 h). The increase of forearm glucose uptake was due to increase of blood flow. The glucose oxidation was greater in the group treated with metformin, compared to the same group without anti-hyperglycemic drug (19.3+/-2.6 VS. 7.7+/-2.6 mg/100 ml FA. 3 hrs). The free fatty acids were higher in diabetes patients, which normalized after taking metformin. In conclusion, it was found that in these participants metformin acts in insulin resistance; it increases glucose muscle uptake and blood flow. The enhancement of blood flow and lower free fatty acids, not described yet, could be direct effects of the drug or due to reduced glucose toxicity. These positive effects must be responsible for the improvement in vascular function.  相似文献   

4.
Objective: An impaired fatty acid handling in skeletal muscle may be involved in the development of insulin resistance and diabetes mellitus type 2 (DM2). We investigated muscle fatty acid metabolism in glucose‐intolerant men (impaired glucose tolerance (IGT)), a prediabetic state, relative to BMI‐matched control men (normal glucose tolerance (NGT)) during fasting and after a meal, because most people in the western society are in the fed state most of the day. Methods and Procedures: Skeletal muscle free fatty acid (FFA) uptake and oxidation were studied using the stable isotope tracer [2,2‐2H]‐palmitate and muscle indirect calorimetry in the forearm model during fasting and after a mixed meal (33 energy % (E%) carbohydrates, 61 E% fat). Intramyocellular triglycerides (IMTGs) were monitored with 1H‐magnetic resonance spectroscopy. IGT men were re‐examined after weight loss (?15% of body weight (BW)). Results: The postprandial increase in forearm muscle respiratory quotient (RQ) was blunted in IGT compared to NGT, but improved after weight loss. Weight loss also improved fasting‐fat oxidation and tended to decrease IMTGs (P = 0.08). No differences were found in fasting and postprandial forearm muscle fatty acid uptake between NGT and IGT, or in IGT before and after weight loss. Discussion: The ability to switch from fat oxidation to carbohydrate oxidation after a meal is already impaired in the prediabetic state, suggesting this may be an early factor in the development toward DM2. This impaired ability to regulate fat oxidation during fasting and after a meal (impaired metabolic flexibility) can be (partly) reversed by weight loss.  相似文献   

5.
Intravenous glucose tolerance (IVGTT), basal insulin and insulin response to glucose infusion (GIT), insulin sensitivity, and lipoprotein patterns were determined in non-obese post-coronary subjects, 3-6 months after myocardial infarction. Twelve had decreased and 31 normal IVGTT. The control group comprised 31 subjects with normal IVGTT, who did not display any signs of coronary disease. The post-coronary patients were not taking any drugs except for furosamide, which was shown not to influence insulin response to GIT or glucose tolerance. Decreased IVGTT in the post-coronary patients could be ascribed to decreased insulin response and insulin resistance. These two derangements are considered as hereditary markers in glucose intolerance and type 2 diabetes. Accordingly, our findings suggest that glucose intolerance in subjects with myocardial infarcts has the same background. The post-coronary patients demonstrated elevated triglycerides (TG) and cholesterol in total serum and in very low density lipoproteins (VLDL), the lipoprotein patterns being almost identical in post-coronary patients with or without decreased IVGTT. No relationship was found in the control and post-coronary groups between IVGTT, basal insulin, stimulated insulin (KI, IP), and insulin sensitivity (KG), on the one hand, and total or VLDL TG or any other lipoprotein particle, on the other. Thus, the derangements in glucose, insulin, and serum triglyceride metabolism were independent abnormalities (risk factors) in these non-obese post-coronary patients.  相似文献   

6.
OBJECTIVE: Among obese subjects, acanthosis nigricans in both males and females is not as uncommon as previously thought. Whereas this finding was extensively evaluated in females, mostly in the context of polycystic ovaries syndrome, little attention has been paid to obese males with acanthosis nigricans. As acanthosis seems to be a marker for insulin resistance, the present study was designed to evaluate the hypothesis that the clinical syndrome of obesity and acanthosis would take a different clinical course than that of simple obesity. METHODS: To characterize the course of acanthosis nigricans and obesity in males, we examined 22 children and adolescents with this complex, together with their parents and grandparents and found them to follow a detrimental sequence of the metabolic syndrome. We compared the findings to 13 age-matched males with obesity but no clinical apparent acanthosis nigricans. We analyzed the clinical course, fat distribution, glucose, insulin and C-peptide and lipoproteins. RESULTS: Onset of obesity in the metabolic syndrome group was at a mean age of 6.4 years, as compared to 2.3 years in the controls. The metabolic syndrome patients had a truncal (android) distribution of fat and their fasting blood glucose was significantly higher. HDL/total cholesterol was lower. Examination of the pedigrees suggested autosomal dominant inheritance of the obesity and acanthosis nigricans complex, extending to hypertension and ischemic heart disease in the parents' generation, and further extending to include diabetes type 2 in the grandparents' generation. CONCLUSIONS: This metabolic syndrome is inherited as an autosomal dominant trait, with onset of truncal obesity at age 6-7 years, acanthosis nigricans during childhood or adolescence, extending to hypertension and ischemic heart disease during young adulthood, and further extending to include diabetes type 2 in late adulthood. It is recommended that such children should be followed up as an 'at-risk' group, and would probably benefit from intensive weight reduction, which may prevent the later manifestations of the syndrome.  相似文献   

7.
6 girls, aged 4-16 years, with acanthosis nigricans and hirsutism were studied. Fasting and postglucose hyperinsulinism was present in the 5 older girls. In the youngest, a transitory diabetes with hyperinsulinism was induced by a cortisone therapy for hepatitis. Insulin resistance, suggested by the failure to significantly decrease blood glucose after insulin injection (0.1 U/kg), was demonstrated in three steps: (1) Patient plasma failed to bind 125I-insulin after a 5-day incubation followed by precipitation by antihuman globulin serum. (2) Specific 125I-insulin binding to rat liver membranes was identical in the presence of patient plasma and control plasma. (3) Specific 125I-insulin binding to the erythrocytes of the 6 patients (3.5-7.0%) was significantly lower (p less than 0.01) than in controls (4.5-19.5%). Moreover, the significant correlation present in controls between total binding and reticulocyte counts (r = 0.824, p less than 0.001) was absent in the patients. These data demonstrate further that, in the juvenile type of acanthosis nigricans, insulin resistance which may precede hyperinsulinism is not related to anti-insulin antibodies nor to antireceptor antibodies, but results from a primary defect of insulin receptors.  相似文献   

8.
Although chronic hyperinsulinemia has been shown to induce insulin resistance, the basic cellular mechanisms responsible for this phenomenon are unknown. The present study was performed 1) to determine the time-related effect of physiological hyperinsulinemia on glycogen synthase (GS) activity, hexokinase II (HKII) activity and mRNA content, and GLUT-4 protein in muscle from healthy subjects, and 2) to relate hyperinsulinemia-induced alterations in these parameters to changes in glucose metabolism in vivo. Twenty healthy subjects had a 240-min euglycemic insulin clamp study with muscle biopsies and then received a low-dose insulin infusion for 24 (n = 6) or 72 h (n = 14) (plasma insulin concentration = 121 +/- 9 or 143 +/- 25 pmol/l, respectively). During the baseline insulin clamp, GS fractional velocity (0.075 +/- 0.008 to 0.229 +/- 0.02, P < 0.01), HKII mRNA content (0.179 +/- 0.034 to 0.354 +/- 0.087, P < 0.05), and HKII activity (2.41 +/- 0.63 to 3.35 +/- 0.54 pmol x min(-1) x ng(-1), P < 0.05), as well as whole body glucose disposal and nonoxidative glucose disposal, increased. During the insulin clamp performed after 24 and 72 h of sustained physiological hyperinsulinemia, the ability of insulin to increase muscle GS fractional velocity, total body glucose disposal, and nonoxidative glucose disposal was impaired (all P < 0.01), whereas the effect of insulin on muscle HKII mRNA, HKII activity, GLUT-4 protein content, and whole body rates of glucose oxidation and glycolysis remained unchanged. Muscle glycogen concentration did not change [116 +/- 28 vs. 126 +/- 29 micromol/kg muscle, P = nonsignificant (NS)] and was not correlated with the change in nonoxidative glucose disposal (r = 0.074, P = NS). In summary, modest chronic hyperinsulinemia may contribute directly (independent of change in muscle glycogen concentration) to the development of insulin resistance by its impact on the GS pathway.  相似文献   

9.
We describe a 17-yr-old girl with insulin resistant diabetes, acanthosis nigricans, hirsutism and short stature. At the age of 14 she was found to have glycosuria and diagnosed as diabetes mellitus. No endocrinological abnormality except transient amenorrhea and exaggerated LH response to LHRH was found. Insulin resistance was demonstrated by fasting hyperinsulinemia, insulin tolerance test and euglycemic glucose clamp test, and large doses of insulin with CSII were not effective in controlling blood glucose. Insulin binding to erythrocytes was normal, suggesting a postbinding defect. The same phenotype of insulin resistant diabetes and short stature was found in her mother who was diagnosed as diabetes mellitus at the age of 31 and died of diabetic nephropathy at the age of 41. Her maternal grandfather and uncle were reportedly affected with the same phenotype. Her father had impaired glucose tolerance, but no hyperinsulinemia. Two sisters had essentially normal glucose tolerance. Insulin binding to erythrocytes of her father and mother was also in the normal range. These results suggest that the present case may be a rare syndrome present together with type C syndrome of insulin resistance, and with short stature which was inherited autosomal dominantly.  相似文献   

10.
Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P < 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (-15%, P = 0.06) and the saturated DAG-FA species (-27%, P = 0.06). Training reduced both total ceramide content (-42%, P = 0.01) and the saturated ceramide species (-32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.  相似文献   

11.
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.  相似文献   

12.

Background

Diet-induced obesity is a rising health concern which can lead to the development of glucose intolerance and muscle insulin resistance and, ultimately, type II diabetes mellitus. This research investigates the associations between glucose intolerance or muscle insulin resistance and tissue specific changes during the progression of diet-induced obesity.

Methodology

C57BL/6J mice were fed a normal or high-fat diet (HFD; 60% kcal fat) for 3 or 8 weeks. Disease progression was monitored by measurements of body/tissue mass changes, glucose and insulin tolerance tests, and ex vivo glucose uptake in intact muscles. Lipid metabolism was analyzed using metabolic chambers and ex vivo palmitate assays in intact muscles. Skeletal muscle, liver and adipose tissues were analyzed for changes in inflammatory gene expression. Plasma was analyzed for insulin levels and inflammatory proteins. Histological techniques were used on muscle and liver cryosections to assess metabolic and morphological changes.

Principal Findings/Conclusions

A rapid shift in whole body metabolism towards lipids was observed with HFD. Following 3 weeks of HFD, elevated total lipid oxidation and an oxidative fiber type shift had occurred in the skeletal muscle, which we propose was responsible for delaying intramyocellular lipid accumulation and maintaining muscle’s insulin sensitivity. Glucose intolerance was present after three weeks of HFD and was associated with an enlarged adipose tissue depot, adipose tissue inflammation and excess hepatic lipids, but not hepatic inflammation. Furthermore, HFD did not significantly increase systemic or muscle inflammation after 3 or 8 weeks of HFD suggesting that early diet-induced obesity does not cause inflammation throughout the whole body. Overall these findings indicate skeletal muscle did not contribute to the development of HFD-induced impairments in whole-body glucose tolerance following 3 weeks of HFD.  相似文献   

13.
Objective : Insulin resistance is observed in individuals with normal glucose tolerance. This indicates that increased insulin secretion can compensate for insulin resistance and that additional defects are involved in impaired glucose tolerance or type 2 diabetes. The objective of this study was to evaluate a procedure aimed at assessing the compensatory mechanisms to insulin resistance. Research Methods and Procedures : Eight healthy nonobese female patients were studied on two occasions, before and after administration of 2 mg/d dexamethasone for 2 days during a two‐step hyperglycemic clamp. Insulin secretion was assessed from plasma insulin concentrations. Insulin sensitivity was assessed from the ratio of whole‐body glucose use (6, 6 2H2 glucose) to plasma insulin concentrations. This procedure is known to induce a reversible impairment of glucose tolerance and insulin resistance. Results : In all subjects, dexamethasone induced a decrease in insulin sensitivity and a proportionate increase in first‐phase insulin secretion and in insulin concentrations at both steps of glycemia. The resulting hyperinsulinemia allowed the restoration of normal whole‐body glucose uptake and the suppression of plasma free fatty acids and triglycerides. In contrast, the suppression of endogenous glucose production was impaired after dexamethasone (p < 0.01). Discussion : Increased insulin secretion fully compensates dexamethasone‐induced insulin resistance in skeletal muscle and adipose tissue but not in the liver. This suggests that failure to overcome hepatic insulin resistance can impair glucose tolerance. The compensatory insulin secretion in response to insulin resistance can be assessed by means of a hyperglycemic clamp after a dexamethasone challenge.  相似文献   

14.
In humans, the skin is a target tissue for androgen action; hair growth and sebum secretion are under active androgen control. An increased production or metabolism of testosterone, the main active androgen, shows up clinically in dermatological symptoms such as hirsutism, hyperseborrheic acne and alopecia. Polycystic ovary syndrome (PCOS) is the most frequent androgen disorder of ovarian function. PCOS patients have amenorrhea or severe oligomenorrhea, increased testosterone levels and most often enlarged polycystic ovaries on ultrasound examination. In addition, many PCOS patients have a tendency to accumulate abdominal fat and/or to develop obesity. Some also display a particular metabolic pattern including an atherogenic lipid profile, glucose intolerance and an increased fasting insulin level, which is known to be closely linked with an insulin resistant state. Several studies have now reported that PCOS patients show increased incidence of type 2 diabetes and cardiovascular disease. In addition to being a target for androgens the skin has abundant insulin receptors on the keratinocyte surface membrane and acanthosis nigricans is a common symptom of severe insulin resistance among patients with insulin receptor disorders. However, acanthosis nigricans could also be present in PCOS women given evidence of the intensity of their insulin resistance. This presentation will review the mutual relationship between hyperandrogenia and insulin resistance, with particular attention paid to: (1) insulin secretion and insulin sensitivity in PCOS; (2) the complexity of the molecular mechanisms involved in insulin resistance; (3) the paradoxical relationship between insulin resistance and hyperandrogenia; (4) the current genetic studies; and (5) new avenues for long-term treatment of PCOS women.  相似文献   

15.
Our objectives were to quantitate insulin-stimulated inward glucose transport and glucose phosphorylation in forearm muscle in lean and obese nondiabetic subjects, in lean and obese type 2 diabetic (T2DM) subjects, and in normal glucose-tolerant, insulin-resistant offspring of two T2DM parents. Subjects received a euglycemic insulin (40 mU.m(-2).min(-1)) clamp with brachial artery/deep forearm vein catheterization. After 120 min of hyperinsulinemia, a bolus of d-mannitol/3-O-methyl-d-[(14)C]glucose/d-[3-(3)H]glucose (triple-tracer technique) was given into brachial artery and deep vein samples obtained every 12-30 s for 15 min. Insulin-stimulated forearm glucose uptake (FGU) and whole body glucose metabolism (M) were reduced by 40-50% in obese nondiabetic, lean T2DM, and obese T2DM subjects (all P < 0.01); in offspring, the reduction in FGU and M was approximately 30% (P < 0.05). Inward glucose transport and glucose phosphorylation were decreased by approximately 40-50% (P < 0.01) in obese nondiabetic and T2DM groups and closely paralleled the decrease in FGU. The intracellular glucose concentration in the space accessible to glucose was significantly greater in obese nondiabetic, lean T2DM, obese T2DM, and offspring compared with lean controls. We conclude that 1) obese nondiabetic, lean T2DM, and offspring manifest moderate-to-severe muscle insulin resistance (FGU and M) and decreased insulin-stimulated glucose transport and glucose phosphorylation in forearm muscle; these defects in insulin action are not further reduced by the combination of obesity plus T2DM; and 2) the increase in intracelullar glucose concentration under hyperinsulinemic euglycemic conditions in obese and T2DM groups suggests that the defect in glucose phosphorylation exceeds the defect in glucose transport.  相似文献   

16.
Glycerol release from the human forearm which is generally used as a semiquantitative index of intramuscular lipolysis was studied under different hormonal influence and substrate supply in healthy volunteers and juvenile diabetics using the forearm technique. Acute insulin deficiency in juvenile diabetics failed stimulating the rate of muscular lipolysis since the rates of glycerol release in normals and diabetics were the same. In addition, in normal volunteers high physiological levels of insulin caused by an intraarterial infusion of the hormone exhibited no effect on the glycerol release from deep forearm tissue. Similarly, an intraarterial infusion of metaproterenol did not accelerate muscular glycerol release in normal man. However, in juvenile diabetics in acute insulin deficiency the same dose of the catecholamine increased the rate of muscular glycerol production. Elevated substrate supply during intravenous infusion of glucose or fructose yielded increased uptake of glucose and fructose into the deep forearm tissue and thereby promptly blocked muscular glycerol release in normal volunteers and in juvenile diabetics. These findings suggest that the rate of lipolysis in muscle tissue is not primarily under the control of hormones but rather by substrate supply.  相似文献   

17.
To assess mechanisms for postprandial hyperglycemia, we used a triple-isotope technique ([\3-(3)H]glucose and [(14)C]bicarbonate and oral [6,6-dideutero]glucose iv) and indirect calorimetry to compare components of glucose release and pathways for glucose disposal in 26 subjects with type 2 diabetes and 15 age-, weight-, and sex-matched normal volunteers after a standard meal. The results were as follows: 1) diabetic subjects had greater postprandial glucose release (P<0.001) because of both increased endogenous and meal-glucose release; 2) the greater endogenous glucose release (P<0.001) was due to increased gluconeogenesis (P<0.001) and glycogenolysis (P=0.01); 3) overall tissue glucose uptake, glycolysis, and storage were comparable in both groups (P>0.3); 4) glucose clearance (P<0.001) and oxidation (P=0.004) were reduced, whereas nonoxidative glycolysis was increased (P=0.04); and 5) net splanchnic glucose storage was reduced by approximately 45% (P=0.008) because of increased glycogen cycling (P=0.03). Thus in type 2 diabetes, postprandial hyperglycemia is primarily due to increased glucose release; hyperglycemia overcomes the effects of impaired insulin secretion and sensitivity on glucose transport, but intracellular defects persist so that pathways of glucose metabolism are abnormal and glucose is shunted away from normal sites of storage (e.g., liver and muscle) into other tissues.  相似文献   

18.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

19.
Numerous studies have shown an association between low weight at birth and being born small for gestational age (SGA) on the one hand and risk of developing insulin resistance and type 2 diabetes on the other. Our studies in twins have indicated a non-genetic age-dependent origin of insulin resistance and type 2 diabetes associated with being born SGA. In order to gain insight into the molecular metabolic defects and mechanisms linking SGA with insulin resistance and type 2 diabetes, we performed a series of experiments in young and elderly twins, and, in particular, in young men (aged 19-23 years) with a weight at birth at term in the lowest 10th percentile with no family history of diabetes. The control group included age-matched men with birth weights at term in the upper normal range. While body mass index and waist-to-hip ratios were similar in the individuals born SGA and controls, dual-energy X-ray absorptiometry studies documented a higher degree of abdominal obesity in the men who had a low weight at birth. Using the gold standard hyperinsulinaemic-euglycaemic clamp technique combined with glucose tracers and studies of forearm glucose uptake, we found an impairment of insulin-stimulated glycolytic flux and reduced forearm (muscle) glucose uptake in the face of normal whole-body glucose uptake. In addition, we found a significantly decreased insulin secretion rate during oral glucose ingestion after correction for insulin action (disposition index), a paradoxical enhanced insulin suppression of hepatic glucose production and lower fasting plasma glycerol levels, suggesting impaired lipolysis. Finally, analysis of skeletal muscle biopsies showed reduced muscle expression of several key proteins involved in insulin signalling and glucose transport, including protein kinase C-zeta, the two subunits of phosphoinositol 3-kinase (i.e., p85alpha and p110beta) and the insulin-sensitive glucose transporter, Glut-4, in individuals of low birth weight. In conclusion, being born SGA and of low birth weight is associated with type 2 diabetes in a non-genetic manner, and programming of muscle insulin action and signalling represents an early mechanism responsible for this association.  相似文献   

20.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号