首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless mobile phones and other telecommunication devices are used extensively in daily life. We therefore examined the effects of combined exposure to radiofrequency electromagnetic fields (RF‐EMF) on rat testicular function, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to single code division multiple access (CDMA) and wideband code division multiple access (WCDMA) RF signals for 12 weeks. The RF exposure schedule comprised 45 min/day, 5 days/week for a total of 12 weeks. The whole‐body average specific absorption rate (SAR) of CDMA and WCDMA was 2.0 W/kg each or 4.0 W/kg in total. We then investigated the correlates of testicular function such as sperm count in the cauda epididymis, testosterone concentration in the blood serum, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, and appearance of apoptotic cells in the testes. We also immunoblotted for p53, bcl2, GADD45, cyclin G, and HSP70 in the testes of sham‐ and combined RF‐exposed animals. Based on the results, we concluded that simultaneous exposure to CDMA and WCDMA RF‐EMFs at 4.0 W/kg SAR did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 33:356–364, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
3.
The present study was designed to evaluate whether a 2 year exposure to an electromagnetic field (EMF) equivalent to that generated by cellular phones can accelerate tumor development in the central nervous system (CNS) of rats. Brain tumorigenesis was initiated by an intrauterine exposure to N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated control; Group 2, ENU alone; Groups 3-5, ENU + EMF (sham exposure and 2 exposure levels). A 1.439 GHz time division multiple access (TDMA) signal for the Personal Digital Cellular (PDC), Japanese standard cellular system was used for the exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rate (SAR) was 0.67 and 2.0 W/kg for low and high exposures, respectively: whole body average SAR was less than 0.4 W/kg. There were no inter-group differences in body weights, food consumption, and survival rates. No increase in the incidences or numbers per group of brain and/or spinal cord tumors, either in the males or females, was detected in the EMF exposed groups. In addition, no clear changes in tumor types were evident. Thus, under the present experimental conditions, 1.439 GHz EMF exposure to the heads of rats for a 2 year period was not demonstrated to accelerate or affect ENU initiated brain tumorigenesis.  相似文献   

4.
The widespread use of the mobile phone has initiated many studies on the possible adverse effects of a high frequency electromagnetic field (EMF), which is used in mobile phones. A low frequency EMF is reported to suppress melatonin synthesis. The aim of this study was to clarify the effects on melatonin synthesis in rats after short term exposure to a 1439 MHz time division multiple access (TDMA) EMF. The average specific absorption ratio (SAR) of the brain was 7.5 W/kg, and the average SARs of the whole body were 1.9 and 2.0 W/kg for male and female rats, respectively. A total of 208 male and female rats were investigated. After acclimatization to a 12 h light-dark (LD) cycle, serum and pineal melatonin levels together with pineal serotonin level under a dark condition (less than 1 lux) were examined by radioimmunoassay. No significant differences in melatonin and serotonin levels were observed between the exposure, sham, and cage control groups. These results suggest that short term exposure to a 1439 MHz TDMA EMF, which is about four times stronger than that emitted by mobile phones, does not alter melatonin and serotonin synthesis in rats. Further investigations on the effects of long term exposure are warranted.  相似文献   

5.
In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.  相似文献   

6.
The increasing use of mobile telephones raises the question of possible adverse effects of the electromagnetic fields (EMF) that these phones produce. In this study, we examined the oxidative stress in the brain tissue and serum of rats that resulted from exposure to a 900-MHz EMF at a whole body average specific absorption rate (SAR) of 1.08 W/kg for 1 h/day for 3 weeks. We also examined the antioxidant effect of garlic powder (500 mg/kg/day) given orally to EMF-exposed rats. We found that malondialdehyde (MDA) (p < 0.001) and advanced oxidation protein product (AOPP) (p < 0.05) increased in rat brain tissue exposed to the EMF and that garlic reduced these effects (p < 0.05). There was no significant difference in the nitric oxide (NO) levels in the brain. Paraoxonase (PON) was not detected in the brain. There was a significant increase in the levels of NO (p < 0.001) detected in the serum after EMF exposure, and garlic intake did not affect this increase in NO. Our results suggest that there is a significant increase in brain lipid and protein oxidation after electromagnetic radiation (EMR) exposure and that garlic has a protective effect against this oxidative stress.  相似文献   

7.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Modern mobile phones emit electromagnetic fields (EMFs) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. To date most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies were concerned with Universal Mobile Telecommunications System (UMTS)-EMF. Consequently, we tested the effects of both types of EMF, 1950 MHz UMTS (SAR 0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on well-being and vigilance-controlled resting electroencephalogram (eyes closed) in 15 healthy, right-handed subjects. A double-blind, randomised, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.  相似文献   

9.
Whether exposure to radiation emitted from cellular phones poses a health hazard is at the focus of current debate. We have examined whether in vitro exposure of human peripheral blood lymphocytes (PBL) to continuous 830 MHz electromagnetic fields causes losses and gains of chromosomes (aneuploidy), a major "somatic mutation" leading to genomic instability and thereby to cancer. PBL were irradiated at different average absorption rates (SAR) in the range of 1.6-8.8 W/kg for 72 hr in an exposure system based on a parallel plate resonator at temperatures ranging from 34.5-37.5 degrees C. The averaged SAR and its distribution in the exposed tissue culture flask were determined by combining measurements and numerical analysis based on a finite element simulation code. A linear increase in chromosome 17 aneuploidy was observed as a function of the SAR value, demonstrating that this radiation has a genotoxic effect. The SAR dependent aneuploidy was accompanied by an abnormal mode of replication of the chromosome 17 region engaged in segregation (repetitive DNA arrays associated with the centromere), suggesting that epigenetic alterations are involved in the SAR dependent genetic toxicity. Control experiments (i.e., without any RF radiation) carried out in the temperature range of 34.5-38.5 degrees C showed that elevated temperature is not associated with either the genetic or epigenetic alterations observed following RF radiation-the increased levels of aneuploidy and the modification in replication of the centromeric DNA arrays. These findings indicate that the genotoxic effect of the electromagnetic radiation is elicited via a non-thermal pathway. Moreover, the fact that aneuploidy is a phenomenon known to increase the risk for cancer, should be taken into consideration in future evaluation of exposure guidelines.  相似文献   

10.
Effect of electromagnetic radiation 460 MHz with 2.5-40 Hz pulse modulation rate on Drosophila embryos of 15 h 10 m age was studied. It was demonstrated that a 5-min irradiation with 0.12 W/kg average SAR (3 W/kg pulsed SAR) alters the Drosophila percentage of interrupted development. The effect strength depended on the modulation rate with a pronounced decrease at 10 and 16 Hz. A hypothesis about the presence of thermal and non-thermal mechanisms of action of pulse-modulated microwave radiation diversely effecting the embryos has been put forward and grounded.  相似文献   

11.
To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.  相似文献   

12.
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.  相似文献   

13.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

14.
The objective of this study was to investigate the effects of radiofrequency radiation emitted from cellular phones on the lipid composition, malondialdehyde concentration, p53 immune reactivity, sperm count, morphology, histological structure of testes, and on rectal temperature of rats exposed to microwave radiation emitted from cellular phones. Sixteen Spraque-Dawley rats were separated into two groups of eight, sham exposed (control) and experimental. The rats were confined in plexiglas cages specially designed for this study, and cellular phones were placed 0.5 cm under the cages. For the experimental group, cellular phones were activated 20 min per day (7 days a week) for 1 month. For the control group, the cellular phones were placed beneath the cages for 20 min a day, but the phones were turned off. Rectal temperatures were measured weekly. For 250 mW radiated power, the whole body average SAR (rms) is 0.52 W/kg and 1 g averaged peak SAR (rms) is 3.13 W/kg. The Mann-Whitney U-test was used for statistical comparisons of groups. No statistically significant alteration in any of the endpoints was noted. This study found no evidence suggesting an adverse effect of cell phone exposure on measures of testicular function or structure.  相似文献   

15.
Several studies in the past reported influences of electromagnetic emissions of GSM phones on reaction time in humans. However, there are currently only a few studies available dealing with possible effects of the electromagnetic fields emitted by UMTS mobile phones. In our study, 40 healthy volunteers (20 female, 20 male), aged 26.0 years (range 21-30 years) underwent four different computer tests measuring reaction time and attention under three different UMTS mobile phone-like exposure conditions (two exposure levels plus sham exposure). Exposure of the subjects was accomplished by small helical antennas operated close to the head and fed by a generic signal representing the emissions of a UMTS mobile phone under constant receiving conditions as well as under a condition of strongly varying transmit power. In the high exposure condition the resulting peak spatial average exposure of the test subjects in the cortex of the left temporal lobe of the brain was 0.63 W/kg (min. 0.25 W/kg, max. 1.49 W/kg) in terms of 1 g averaged SAR and 0.37 W/kg (min. 0.16 W/kg, max. 0.84 W/kg) in terms of 10 g averaged SAR, respectively. Low exposure condition was one-tenth of high exposure and sham was at least 50 dB below low exposure. Statistical analysis of the obtained test parameters showed that exposure to the generic UMTS signal had no statistically significant immediate effect on attention or reaction. Therefore, this study does not provide any evidence that exposure of UMTS mobiles interferes with attention under short-term exposure conditions.  相似文献   

16.
The ability of living organisms to perceive electromagnetic radiation is one of the most intriguing issues that concern the fundamental problem of interaction of living matter with the factors of physical nature. Polyphosphates can be possible receptors. The purpose of the study was to evaluate the role of the polyphosphatases PPN1 and PPX1 in the cell response to exposure to electromagnetic fields (EMFs) of 1871 MHz that were generated by DCS-1800 base stations. Six-week exposure at energy flux densities of 0.1–10 W/m2 was used. The corresponding values of specific adsorption rate (SAR) were 0.0075–1.5 W/kg. Electromagnetic radiation was found to lead to the impairment of a number of physiological and metabolic functions of cells, change their resistance to antibiotics, and result in irreversible changes in their genome. Low doses of the EMF caused the strongest biological responses. It was demonstrated that the deficiency in the ppn1 and ppx1 genes made the strains less adaptive, which resulted in an increase in their sensitivity to EMF exposure. Both polyphosphatases PPN1 and PPX1 were shown to be necessary for the normal cell response to the nonionizing electromagnetic radiation of 1871 MHz.  相似文献   

17.
Zeng Q  Chen G  Weng Y  Wang L  Chiang H  Lu D  Xu Z 《Proteomics》2006,6(17):4732-4738
Despite many studies over a decade, it still remains ambiguous as to the real biological effects induced by radiofrequency electromagnetic fields (RF EMF) utilized in mobile telephony. Here we investigated global gene and protein responses to RF EMF simulating the Global System for Mobile Communications (GSM) 1800 MHz signal in human breast cancer cell line MCF-7 using genomic and proteomic approaches. GeneChip analysis identified a handful of consistent changed genes after exposure to RF EMF at specific absorption rates (SAR) of up to 3.5 W/kg for 24 h. However, these differentially transcribed genes could not be further confirmed by real-time RT-PCR assay. Meanwhile, systematic proteome analysis of the MCF-7 cells revealed that a few but different proteins were differentially expressed under continuous or intermittent RF EMF exposure at SAR of 3.5 W/kg for 24 h or less, implying that the observed effects might have occurred by chance. Overall, the present study does not provide convincing evidence that RF EMF exposure under current experimental conditions can produce distinct effects on gene and protein expression in the MCF-7 cells.  相似文献   

18.
Many environmental signals, including ionizing radiation and UV rays, induce activation of Egr-1 gene, thus affecting cell growth and apoptosis. The paucity and the controversial knowledge about the effect of electromagnetic fields (EMF) exposure of nerve cells prompted us to investigate the bioeffects of radiofrequency (RF) radiation on SH-SY5Y neuroblastoma cells. The effect of a modulated RF field of 900 MHz, generated by a wire patch cell (WPC) antenna exposure system on Egr-1 gene expression, was studied as a function of time. Short-term exposures induced a transient increase in Egr-1 mRNA level paralleled with activation of the MAPK subtypes ERK1/2 and SAPK/JNK. The effects of RF radiations on cell growth rate and apoptosis were also studied. Exposure to RF radiation had an anti-proliferative activity in SH-SY5Y cells with a significant effect observed at 24 h. RF radiation impaired cell cycle progression, reaching a significant G2-M arrest. In addition, the appearance of the sub-G1 peak, a hallmark of apoptosis, was highlighted after a 24-h exposure, together with a significant decrease in mRNA levels of Bcl-2 and survivin genes, both interfering with signaling between G2-M arrest and apoptosis. Our results provide evidence that exposure to a 900 MHz-modulated RF radiation affect both Egr-1 gene expression and cell regulatory functions, involving apoptosis inhibitors like Bcl-2 and survivin, thus providing important insights into a potentially broad mechanism for controlling in vitro cell viability.  相似文献   

19.
The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used.  相似文献   

20.
Our previous studies showed that docetaxel-induced apoptosis of human melanoma cells was dependent on the activation of the c-jun NH(2)-terminal kinase (JNK) signaling pathway but was inhibited by the extracellular signal-regulated kinase (ERK)-1/2 pathway. However, the mechanisms by which these pathways were modulated by docetaxel were not clear. We report here that docetaxel induces activation of protein kinase C (PKC) signaling differentially through PKCepsilon and PKCdelta isoforms. Activation of PKCepsilon was most marked in docetaxel-resistant cells and paralleled the activation of the ERK1/2 pathway. Inhibition of PKCepsilon by small interfering RNA molecules resulted in down-regulation of phosphorylated ERK1/2 and sensitization of cells to docetaxel-induced apoptosis. Experiments also showed that beta-tubulin class III, a molecular target of docetaxel, coimmunoprecipitated with PKCepsilon and colocalized in confocal microscopic studies. In contrast to PKCepsilon, high levels of activated PKCdelta were associated with activation of the JNK pathway and sensitivity to docetaxel. Activation of PKCdelta seemed to be upstream of JNK because inhibition of PKCdelta by small interfering RNA abrogated activation of the JNK pathway. Although PKCdelta could be activated in resistant cells, downstream activation of JNK and c-Jun did not occur. In summary, these results suggest that the outcome of docetaxel-induced apoptotic events in human melanoma cells depends on their PKC isoform content and signaling responses. PKCepsilon was associated with prosurvival signaling through ERK, whereas PKCdelta was associated with proapoptotic responses through JNK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号