首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Fv1 gene restricts murine leukemia virus replication via an interaction with the viral capsid protein. To study this interaction, a number of mutations, including a series of N-terminal and C-terminal deletions, internal deletions, and a number of single-amino-acid substitutions, were introduced into the n and b alleles of the Fv1 gene and the effects of these changes on virus restriction were measured. A significant fraction of the Fv1 protein was not required for restriction; however, retention of an intact major homology region as well as of domains toward the N and C termini was essential. Binding specificity appeared to be a combinatorial property of a number of residues within the C-terminal portion of Fv1.  相似文献   

5.
Human TRIM5alpha (TRIM5alpha(hu)) potently restricts N-tropic (N-MLV), but not B-tropic, murine leukemia virus in a manner dependent upon residue 110 of the viral capsid. Rhesus monkey TRIM5alpha (TRIM5alpha(rh)) inhibits N-MLV only weakly. The study of human-monkey TRIM5alpha chimerae revealed that both the v1 and v3 variable regions of the B30.2/SPRY domain contain potency determinants for N-MLV restriction. These variable regions are predicted to be surface-exposed elements on one face of the B30.2 domain. Acidic residues in v3 complement basic residue 110 of the N-MLV capsid. The results support recognition of the retroviral capsid by the TRIM5alpha B30.2 domain.  相似文献   

6.
We previously reported that the human bronchocarcinoma cell line A549 produces poorly infectious gibbon ape leukemia virus-pseudotyped Moloney murine leukemia virus (MLV). In contrast, similar amounts of virions recovered from human fibrosarcoma HT1080 cells result in 10-fold-higher transduction rates (G. Duisit, A. Salvetti, P. Moullier, and F. Cosset, Hum. Gene Ther. 10:189-200, 1999). We have now extended this initial observation to other type-C envelope (Env) pseudotypes and analyzed the mechanism involved. Structural and morphological analysis showed that viral particles recovered from A549 (A549-MLV) and HT1080 (HT1080-MLV) cells were normal and indistinguishable from each other. They expressed equivalent levels of mature Env proteins and bound similarly to the target cells. Furthermore, incoming particles reached the cytosol and directed the synthesis of linear viral DNA equally efficiently. However, almost no detectable circular DNAs could be detected in A549-MLV-infected cells, indicating that the block of infection resulted from defective nuclear translocation of the preintegration complex. Interestingly, pseudotyping of A549-MLV with vesicular stomatitis virus glycoprotein G restored the amount of circular DNA forms as well as the transduction rates to HT1080-MLV levels, suggesting that the postentry blockage could be overcome by endocytic delivery of the core particles downstream of the restriction point. Thus, in contrast to the previously described target cell-dependent Fv-1 (or Fv1-like) restriction in mammalian cells (P. Pryciak and H. E. Varmus, J. Virol. 66:5959-5966, 1992; G. Towers, M. Bock, S. Martin, Y. Takeuchi, J. P. Stoye, and O. Danos, Proc. Natl. Acad. Sci. USA 97:12295-12299, 2000), we report here a new restriction of MLV replication that relies only on the producer cell type.  相似文献   

7.
The murine gene Fv-1 exerts a major control over the replication of Friend murine leukemia virus (F-MuLV). An effect of the gene product has been determined to be at the level of accumulation and integration of viral DNA. Aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, was studied in murine cells infected either permissively or nonpermissively with regard to the Fv-1 genotype. Results indicated that inhibition of DNA polymerase alpha did not affect the accumulation of form III viral DNA in either permissive or nonpermissive cells. However, the normal accumulation of circular form I DNA in permissive cells was inhibited. The block in the accumulation of form I DNA resembled that occurring in some F-MuLV Fv-1-nonpermissive infections. Additionally, aphidicolin treatment resulted in the accumulation of novel low-molecular-weight viral DNA species, normally detectable in a nonpermissive infection of NIH cells with B-tropic F-MuLV. These data suggest that the Fv-1 gene product may interact with host DNA polymerase alpha to prevent viral replication.  相似文献   

8.
9.
Four classes of murine leukemia virus (MuLV) which display distinct cellular tropisms and bind to different retrovirus receptors to initiate virus infection have been described. In the present study, we describe a rapid, sensitive immunofluorescence assay useful for characterizing the initial binding of MuLV to cells. By using the rat monoclonal antibody 83A25 (L. H. Evans, R. P. Morrison, F. G. Malik, J. Portis, and W. J. Britt, J. Virol. 64:6176-6183, 1990), which recognizes an epitope of the envelope gp70 molecule common to the different classes of MuLV, it is possible to analyse the binding of ecotropic, amphotropic, or xenotropic MuLV by using only a single combination of primary and secondary antibodies. The MuLV binding detected by this assay is envelope receptor specific and matches the susceptibility to infection determined for cells from a variety of species. The binding of amphotropic MuLV to NIH 3T3 cells was shown to be rapid, saturable, and temperature dependent. Chinese hamster ovary (CHO-K1) cells normally lack the ability to bind ecotropic virus and are not infectible by ecotropic vectors. Expression of the cloned ecotropic retrovirus receptor gene (Rec) in CHO-K1 cells confers high levels of ecotropic virus-specific binding and confers susceptibility to infection. Characterization of MuLV binding to primary cells may provide insight into the infectibility of cells by retroviruses and aid in the selection of appropriate vectors for gene transfer experiments.  相似文献   

10.
Genetic studies have indicated that integration of retroviral DNA into the host genome depends on the presence of the inverted repeats at the free termini of the long terminal repeats on the unintegrated DNA and on the product of the 3' end of the pol gene (the integrase [IN] protein). While the precise function of the Moloney murine leukemia virus IN protein is uncertain, others have shown that it is a DNA-binding protein and functions in the processing of the inverted repeats prior to integration. By using site-directed mutagenesis, we cloned and expressed the IN protein in Escherichia coli. Crude extracts of total cellular protein were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose filters, denatured in guanidine, renatured, and incubated with oligonucleotide probes. Single- and double-stranded oligonucleotides corresponding to the termini of unintegrated linear viral DNA were specifically bound by the IN protein in this assay. These data suggest that the role of the Moloney IN protein in the early steps of integration involves sequence-specific recognition of the DNA sequences found at the ends of the long terminal repeats.  相似文献   

11.
We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow the study of xenotropic murine leukemia virus in mixtures which also contain recombinant murine leukemia virus and may be helpful in eliminating feline leukemia virus type which often coexists in feline sarcoma or leukemia virus mixtures with other feline leukemia virus types.  相似文献   

12.
13.
Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.  相似文献   

14.
15.
16.
We have investigated the mechanisms by which alleles at the mouse Fv-1 locus restrict replication of murine leukemia viruses. Inhibition of productive infection is closely paralleled by reduced accumulation of integrated proviral DNA as well as by reduced levels of linear viral DNA in a cytoplasmic fraction. Nevertheless, viral DNA is present at nearly normal levels in a nuclear fraction, and total amounts of viral DNA are only mildly affected in restrictive infections, suggesting a block in integration to account for reduced levels of proviral DNA. However, integrase (IN)-dependent trimming of 3' ends of viral DNA occurs normally in vivo during restrictive infections, demonstrating that not all IN-mediated events are prevented in vivo. Furthermore, viral integration complexes present in nuclear extracts of infected restrictive cells are fully competent to integrate their DNA into a heterologous target in vitro. Thus, the Fv-1-dependent activity that restricts integration in vivo may be lost in vitro; alternatively, Fv-1 restriction may prevent a step required for integration in vivo that is bypassed in vitro.  相似文献   

17.
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2-mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2-mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking.  相似文献   

18.
Arsenic trioxide (As(2)O(3)) increased human immunodeficiency virus type 1 (HIV-1) infectivity when particular Homo sapiens and Cercopithecus aethiops cell lines were used as targets. Knockdown of human TRIM5alpha by RNA interference eliminated the As(2)O(3) effect, demonstrating that the drug acts by modulating the activity of this retroviral restriction factor. In contrast, HIV-1 infectivity in target cell lines from other primate species (Cercopithecus tantalus, Macaca mulatta, and Aotus trivirgatus) was not increased by As(2)O(3), despite the potent TRIM5-dependent HIV-1 restriction activity that these cells exhibit. To determine if As(2)O(3) responsiveness is characteristic of particular TRIM5 orthologues and not others, TRIM5 cDNAs from these five primate species were transduced into cat fibroblasts, which lack endogenous HIV-1 restriction activity and, therefore, responsiveness to As(2)O(3). In this context, the HIV-1 restriction activity conferred by all TRIM5 orthologues was largely eliminated by As(2)O(3). The effect of As(2)O(3) on HIV-1 restriction is thus shared by different TRIM5 orthologues but dependent on factors specific to the cell line in which TRIM5 is expressed.  相似文献   

19.
Rhesus TRIM5α (rhTRIM5α), but not human TRIM5α (huTRIM5α), potently inhibits human immunodeficiency virus (HIV) infection and is thus a potentially valuable therapeutic tool. Primary human CD4 T cells engineered to express rhTRIM5α were highly resistant to cell-free HIV type 1 (HIV-1) infection. However, when cocultured with unmodified T cells, rhTRIM5α-expressing cells became highly permissive to HIV-1 infection. Physical separation of rhTRIM5α-expressing cells and unmodified cells revealed that rhTRIM5α efficiently restricts cell-free but not cell-associated HIV transmission. Furthermore, we observed that HIV-infected human cells could infect rhesus CD4 T cells by cell-to-cell contact, but the infection was self-limiting. Subsequently, we noted that a spreading infection ensued when HIV-1-infected rhTRIM5α-expressing human cells were cultured with huTRIM5α- but not rhTRIM5α-expressing cells. Our results suggest that cell-associated HIV transmission in humans is blocked only when both donor and recipient cells express rhTRIM5α. These studies further define the role of rhTRIM5α in cell-free and cell-associated HIV transmission and delineate the utility of rhTRIM5α in anti-HIV therapy.  相似文献   

20.
Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5alpha. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5alpha. We show that rhesus TRIM5alpha can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5alpha, as shown by its sensitivity to distantly related TRIM5alpha from the New World squirrel monkey. Squirrel monkey TRIM5alpha blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5alpha sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号