首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G W Feigenson 《Biochemistry》1989,28(3):1270-1278
Ca2+ binding between lamellae of phosphatidylserine (PS) and phosphatidylcholine (PC) gives rise to a rigid phase of Ca(PS)2. When aqueous Ca2+, hydrated PS/PC, and Ca(PS)2 coexist at equilibrium, the aqueous Ca2+ concentration is invariant and is characteristic of the PS/PC ratio. This characteristic Ca2+ concentration is 0.040 microM for palmitoyloleoylphosphatidylserine without PC and increases as the inverse square of the PS mole fraction at high PS concentration (Raoult's law) and as the inverse square of the PS mole fraction multiplied by a constant at low PS concentration (Henry's law). For example, for palmitoyloleoylphosphatidylserine/palmitoyloleoylphosphatidylcholi ne = 0.6/0.4 or 0.2/0.8, this characteristic Ca2+ concentration is about 0.1 or about 6 microM, respectively. These observations at constant temperature are summarized in a quaternary phase diagram for the four-component system CaCl2/PS/PC/water.  相似文献   

2.
Needle-shaped crystals of the Ca2+-binding protein (CBP) isolated from rabbit skeletal muscle sarcoplasmic reticulum were studied with regard to the influence of Ca2+, K+, and H+ on its solubility and cation binding. The solubility of CBP is sharply decreased with concentration of Ca2+, whereas K+ increased it. Aggregation of the CBP and crystal formation is correlated with the binding of Ca2+. The Ca2+ bound to the crystalline CBP is two to three times higher than that of the soluble form. A strong apparent positive cooperative behavior of Ca2+ binding by CBP was observed concomitant with the shift in equilibrium from the soluble to the crystalline form. From the steepest Hill slope we obtained Hill coefficients of 3.3 for soluble CBP and 14 for the transition between soluble and crystalline forms of CBP. A detailed treatment is presented to validate the applicability of Hill plots for the combined binding and crystallization process. Two-thirds of the Ca2+-binding sites were K+ sensitive and one-third were K+ insensitive. An increase in H+ concentration decreased the Ca2+ binding by crystalline CBP without affecting its solubility, with a pK value of 6.2 determined for this process. These results indicate that the equilibrium between the soluble and crystalline forms of CBP is determined by the amount and nature of the bound cations, Ca2+, K+, and H+. They suggest the possibility that a cycle of aggregation and solubilization of CBP attends the uptake and release of Ca2+ in the sarcoplasmic reticulum, respectively.  相似文献   

3.
The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes   总被引:11,自引:0,他引:11  
Laminin-nidogen complexes were found to aggregate in the presence of divalent cations in a manner dependent on ion concentration. This effect shows a selectivity for Ca2+, as half-maximal aggregation is achieved already at about 10 microM Ca2+, while Mg2+ induces aggregation at 10-fold higher ion concentrations and always to a lesser extent. When binding of Ca2+ to laminin-nidogen complexes was measured by equilibrium dialysis, a total of about 16 binding sites with dissociation constants in the range of 5-300 microM could be identified. At 50 microM Ca2+, where the aggregation is maximal, only two to three Ca2+ ions are bound to laminin-nidogen complexes, indicating that the aggregation reaction is induced by the binding of Ca2+ to a small number of sites and possibly to a single distinct site. Analysis of Ca2+ binding to various proteolytic fragments of laminin allowed the tentative localization of a high affinity binding site to a large fragment comprising two of the short arms connected by the central part of the laminin molecule.  相似文献   

4.
The interaction of cardiolipin with Ca2+ was assessed by measuring the cardiolipin-mediated extraction of 45Ca2+ from an aqueous to an organic (methylene chloride) phase. Cardiolipin binds Ca2+ with high affinity [Kd(apparent) = 0.70 +/- 0.17 microM (S.D.)]. Cation-cardiolipin interactions are selective. Interaction of cardiolipin with Ca2+ is insensitive to Na+, but is inhibited by divalent cations with Mn2+ greater than Zn2+ greater than Mg2+. In addition La3+ and Ruthenium red are particularly potent inhibitors of Ca2+ binding by cardiolipin. Cardiolipin-mediated extraction of Ca2+ into an aqueous phase is also inhibited by phosphatidylcholine. Inhibition of Ca2+-cardiolipin interaction by phosphatidylcholine (a phospholipid known to stabilize the bilayer conformation) may implicate inverted, non-bilayer lipid structures in the binding.  相似文献   

5.
J E Swanson  G W Feigenson 《Biochemistry》1990,29(36):8291-8297
A simple model system is described that allows measurement of equilibrium Ca2+ binding to multilamellar vesicle mixtures of palmitoyloleoylphosphatidylserine (P,O-PS) and dimyristoleoylphosphatidylcholine (MO,MO-PC). The constraint of the chemical equilibrium among aqueous Ca2+, hydrated P,O-PS/MO,MO-PC, and Ca(PS)2, together with measurements of the Ca2+ concentration in equilibrium with defined PS/PC ratios, enables the determination of the thermodynamic activity of the lipids. The activity coefficient of dilute P,O-PS in PC is analyzed in terms of the partial molal free energy to transfer P,O-PS from an environment of PS to an environment of PC. This study of P,O-PS/MO,MO-PC, by comparison with the earlier study of P,O-PS/P,O-PC [Feigensen, G.W. (1989) Biochemistry 20, 1270-1278], reveals that the excess partial molal free energy to transfer P,O-PS from P,O-PS to P,O-PC is -0.7 kcal mol-1. This free energy change arises in part from the favorable transfer of the negatively charged phosphoserine headgroup from an environment of negative charges to an environment of zwitterions. The contribution of acyl chain mismatch to the partial molal free energy to transfer P,O-PS from P,O-PS to MO,MO-PC is found to be approximately +0.7 kcal mol-1. This value is much larger than that of the excess partial molal free energy of mixing in isotropic solutions of linear hydrocarbons that differ in chain length or unsaturation.  相似文献   

6.
Properties of calcium binding by Myxicola axoplasmic protein   总被引:1,自引:0,他引:1  
The 45Ca2+ binding properties of axoplasmic protein from the Myxicola giant axon have been investigated using a centrifugal/concentration-dialysis technique. Scatchard plot analysis of these binding data suggest that Ca2+ is attached to a site with an equilibrium dissociation constant of 7.7 +/- 0.5 microM and a capacity of 4.4 +/- 0.2 mumol/g axoplasmic protein (n = 11). Addition of other cations--Cd2+, Mn2+, Al3+, Cu2+, Ba2+, and Zn2(+)--at concentrations up to 10 microM did not displace 0.2 microM 45Ca2+ from its binding site, probably because of buffering of these cations by amino acid residues within the protein solutions. The protein could be stored at 4 degrees C for up to 16 days with no appreciable change in the number of calcium sites. Ca2+ binding equilibrium took place in less than 30 min of incubation. Increasing the incubation temperature from 4 degrees C to 37 degree C reduced the number of Ca2+ sites. The binding capacity was reduced by one-half when the protein was dialyzed with 4 M urea or high ionic strength KCl (2 M). Calcium binding was examined as a function of pH. When the protein was dialyzed overnight at different pH values and all the binding was done at pH 7.0, the apparent number of Ca2+ sites decreased as the pH of the dialysis medium was increased. When the protein was dialyzed overnight at pH 7.0 and the binding was done at different pH values, the apparent binding capacity increased as pH increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Divalent cation-induced fusion of large unilamellar vesicles (approx. 0.1 micron diameter) made of phosphatidylserine (PS) or phosphatidylglycerol (PG) has been studied. Intermixing of aqueous contents during fusion was followed by the Tb/dipicolinic acid fluorescence assay, and intermixing of membrane components by resonance energy transfer between fluorescent lipid probes. Both assays gave identical threshold concentrations for Ca2+, which were 2 mM for PS and 15 mM for PG. The dependencies of the initial rate of fusion on the concentration of PG vesicles determined by either assay were identical, the order of this dependence being 1.2 in the concentration range of 5-200 microM lipid. For PS liposomes, this order was found to be 1.5 in the fluorescent lipid assay. No leakage of contents was detected during the fusion of PG vesicles. Mg2+ inhibited the Ca2+-induced fusion of PS vesicles, but did not cause any fusion by itself, consistent with previous results with the Tb/dipicolinic acid assay.  相似文献   

8.
Uptake and release of 45Ca by Myxicola axoplasm   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding and release of 45Ca by axoplasm isolated from Myxicola giant axons were examined. Two distinct components of binding were observed, one requiring ATP and one not requiring ATP. The ATP- dependent binding was largely prevented by the addition of mitochondrial inhibitors, whereas the ATP-independent component was unaffected by these inhibitors. The ATP-independent binding accounted for roughly two-thirds of the total 45Ca uptake in solutions containing an ionized [Ca2+] = 0.54 microM and was the major focus of this investigation. This fraction of bound 45Ca was released from the axoplasm at a rate that increased with increasing concentrations of Ca2+ in the incubation fluid. The ions Cd2+ and Mn2+ were also able to increase 45Ca efflux from the sample, but Co2+, Ni2+, Mg2+, and Ba2+ had no effect. The concentration-response curves relating the 45Ca efflux rate coefficients to the concentration of Ca2+, Cd2+, and Mn2+ in the bathing solution were S-shaped. The maximum rate of efflux elicited by one of these divalent ions could not be exceeded by adding a saturating concentration of a second ion. Increasing EGTA concentration in the bath medium from 100 to 200 microM did not increase 45Ca efflux; yet increasing the concentration of the EGTA buffer in the uptake medium from 100 to 200 microM and keeping ionized Ca2+ constant caused more 45Ca to be bound by the axoplasm. These results suggest the existence of high-affinity, ATP-independent binding sites for 45Ca in Myxicola axoplasm that compete favorably with 100 microM EGTA. The 45Ca efflux results are interpreted in terms of endogenous sites that interact with Ca2+, Cd2+, or Mn2+.  相似文献   

9.
In single mouse macrophages stimulated by platelet-activating factor (PAF), the intracellular calcium concentration (Cai) monitored with fura-2 at room temperature presents a biphasic increase, including a transient and a more sustained component. After pulse administration of PAF, the first phase lasts for a few seconds and reaches a peak value of 0.5-1 microM Ca2+ at high PAF concentration. The amplitude of this peak is independent of extracellular Ca2+ concentration, suggesting that the initial Ca2+ transient is due to the release of Ca2+ from intracellular stores. The second phase of the response lasts for several minutes; its maximum amplitude is reached 1-2 min after the brief initial PAF stimulation. This phase, suppressed in zero external Ca2+ and increased in 10 mM Ca2+, is probably due to influx of Ca2+ through the plasma membrane. This secondary Ca2+ increase is blocked by 10-50 microM lanthanum. At low PAF concentration, the initial Ca2+ transient is not followed by a second phase, showing that the initial rises of Ca2+ and of its activator (presumably inositol trisphosphate) are not sufficient to trigger the second phase of Ca2+ increase.  相似文献   

10.
Studies were carried out at pH 7.0 and gamma/2 0.15 before addition of CaCl2 or EDTA. Clotting time, tau, at 3.03 microM fibrinogen and 0.91 u/ml thrombin was determined for equilibrium systems. With added Ca2+, tau decreases, from tau 0 at 0 added Ca2+ (mean, 29.7 +/- 3 s), by approximately 3 s at 5 mM added Ca2+. With added EDTA, tau increases sigmoidally from tau 0 at 0 EDTA to a maximum (mean tau m = 142 +/- 23 s) at approximately 200 microM EDTA. tau then decreases slightly to a minimum at approximately 1.3 mM and finally increases to infinity at approximately 10 mM EDTA. Between 0 and 1.3 mM EDTA, effects on clotting time are completely reversed by adding Ca2+ and, after equilibration at 400 microM EDTA, tau is independent of EDTA concentration. Thus, up to 400 microM EDTA, effects on clotting time are attributed to decreasing fibrinogen bound Ca2+. Between 5 mM Ca2+ and 200 microM EDTA it is assumed that an equilibrium distribution of fibrinogen species having 3, 2, 1, or 0 bound calcium ions is established and that a clotting time is determined by the sum of products of species fractional abundance and pure species clotting time. Analysis indicates that pure species clotting times increase proportionately with decreasing Ca2+ binding, binding sites are nearly independent, and the microscopic association constant for the first bound Ca2+ is approximately 4.9 X 10(6) M-1. Effects of adding Ca2+ at times t1 after thrombin addition to systems initially equilibrated at 200 microM EDTA were determined. Analysis of the relation between tau and t1 indicates that as Ca2+ binding decreases, rate constants for release of B peptides decrease less than those for release of A peptides. As EDTA concentration is increased above 1.3 mM, inhibitory effects of EDTA and CaEDTA progressively increase.  相似文献   

11.
A new derivative of bisbenzylisoquinoline (berbamine type): 0-(4-ethoxylbutyl) berbamine (EBB) was found to possess powerful and specific calmodulin (CaM) inhibitory properties. It inhibited CaM-stimulated Ca2+-Mg2+-ATPase in human erythrocyte membrane with IC50 value of 0.35 microM compared to that of 60 microM of berbamine. CaM-independent basal Ca2+-Mg2+-ATPase, Na+-K+-ATPase and Mg2+-ATPase were not effect at 1.0 microM of EBB at which CaM-dependent Ca2+-Mg2+-ATPase was already potently inhibited. The inhibition of CaM-dependent Ca2+-Mg2+-ATPase was competitive with respect to CaM. Higher amount of CaM reversed the inhibition caused by higher concentration of EBB. Using dansyl-CaM (D-CaM), it was shown that EBB binds directly to CaM and caused a conformational change of CaM polypeptide chain. From fluorescence titration curve we obtained evidence that in the presence of Ca2+, CaM has two specific binding sites for EBB and additional unspecific binding sites. The Ca2+-dependent binding sites of EBB on CaM were novel region different from the binding sites for TFP.  相似文献   

12.
Metal ions, such as Ca2+ and Mn2+, are necessary for the generation of cofactor activity following reconstitution of factor VIII from its isolated light chain (LC) and heavy chain (HC). Titration of EDTA-treated factor VIII with Mn2+ showed saturable binding with high affinity (K(d) = 5.7 +/- 2.1 microM) as detected using a factor Xa generation assay. No significant competition between Ca2+ and Mn2+ for factor VIII binding (K(i) = 4.6 mM) was observed as measured by equilibrium dialysis using 20 microM Ca2+ and 8 microM factor VIII in the presence of 0-1 mM Mn2+. The intersubunit affinity measured by fluorescence energy transfer of an acrylodan-labeled LC (fluorescence donor) and fluorescein-labeled HC (fluorescence acceptor) in the presence of 20 mM Mn2+ (K(d) = 53.0 +/- 17.1 nM) was not significantly different from the affinity value previously obtained in the absence of metal ion (K(d) = 53.8 +/- 14.2 nM). The sensitization of phosphorescence of Tb3+ bound to factor VIII subunits was utilized to detect Mn2+ binding to the subunits. Mn2+ inhibited the phosphorescence of Tb3+ bound to HC and LC, as well as the HC-derived A1 and A2 subunits with a relatively wide range of estimated inhibition constant values (K(i) values = 169-1147 microM), whereas Ca2+ showed no effect on Tb3+ phosphorescence. These results suggest that factor VIII cofactor activity can be generated by Mn2+ binding to site(s) on factor VIII that are different from the high-affinity Ca2+ binding site. However, like Ca2+, Mn2+ did not alter the affinity for HC and LC association. Thus, Mn2+appears to generate factor VIII cofactor activity by a similar mechanism as observed for Ca2+following its association at nonidentical sites on the protein.  相似文献   

13.
Globular proteins may be stabilized, either intrinsically, at the various levels of the structural hierarchy, or extrinsically, by ligand binding. In the case of the dormant all-beta protein spherulin 3a (S3a) from the slime mold Physarum polycephalum, binding of calcium ions causes extreme kinetic and thermodynamic stabilization. S3a is the only known single-domain member of the two Greek key superfamily of betagamma-crystallins sharing the extreme long-term stability of its homologs in vertebrate eye lens. Spectral analysis allows two Ca2+-binding sites with KD=9 microM and 200 microM to be distinguished. Unfolding in the absence and in the presence of Ca2+gives evidence for extreme kinetic stabilization of the protein: In the absence of Ca2+, the half-time of unfolding in 2. 5 M guanidinium chloride (GdmCl) equals 8.3 minutes, whereas in the presence of Ca2+, even in 7.5 M GdmCl, it exceeds nine hours. To reach the equilibrium of unfolding in the absence and in the presence of Ca2+takes one day and eight weeks, respectively. The corresponding Gibbs free energies (based on the two-state model) are 77 and 135 kJ/mol. Saturation of S3a with Ca2+leads to an upward shift of the temperature-induced equilibrium transition by ca 20 deg. C. The in situ Ca2+concentration in the spherules is sufficient for the complete complexation of S3a in vivo.  相似文献   

14.
Black DJ  Leonard J  Persechini A 《Biochemistry》2006,45(22):6987-6995
The relationship between the free Ca2+ concentration and the apparent dissociation constant for the complex between calmodulin (CaM) and the neuromodulin IQ domain consists of two phases. In the first phase, Ca2+ bound to the C-ter EF hand pair in CaM increases the Kd for the complex from the Ca2+-free value of 2.3 +/- 0.1 microM to a value of 14.4 +/- 1.3 microM. In the second phase, Ca2+ bound to the N-ter EF hand pair reduces the Kd for the complex to a value of 2.5 +/- 0.1 microM, reversing the effect of the first phase. Due to energy coupling effects associated with these phases, the mean dissociation constant for binding of Ca2+ to the C-ter EF hand pair is increased approximately 3-fold, from 1.8 +/- 0.1 to 5.1 +/- 0.7 microM, and the mean dissociation constant for binding of Ca2+ to the N-ter EF hand pair is decreased by the same factor, from 11.2 +/- 1.0 to 3.5 +/- 0.6 microM. These characteristics produce a bell-shaped relationship between the apparent dissociation constant for the complex and the free Ca2+ concentration, with a distance of 5-6 microM between the midpoints of the rising and falling phases. Release of CaM from the neuromodulin IQ domain therefore appears to be promoted over a relatively narrow range of free Ca2+ concentrations. Our results demonstrate that CaM-IQ domain complexes can function as biphasic Ca2+ switches through opposing effects of Ca2+ bound sequentially to the two EF hand pairs in CaM.  相似文献   

15.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

16.
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol.  相似文献   

17.
The interaction of 2,7-dimethyl-3-(3,4-dimethoxyphenyl)-3-cyan-7-aza-9-(3- methoxyphenyl) nonahydrochloride (devapamil), a stereospecific analog of (3-[2-(3,4-dimethoxyphenyl)ethyl]- methylaminopropyl-3,4-dimethoxy-(1-methylethyl)benzeneacetonitr ile (verapamil), with the purified skeletal muscle receptor for calcium channel blockers (CaCB) was studied at 4 degrees C and 30 degrees C in the absence and presence of calcium. The purified CaCB receptor bound 0.9 mol devapamil/mol calcium-channel alpha 1 subunit, with an apparent Kd of 13 +/- 2.6 nM at 4 degrees C in the presence of 0.4 microM Ca2+. The affinity, and not the density, of the devapamil-binding site was decreased by lowering the pH from 8.5-6.5, or by increasing the Ca2+ concentration from 0.4 microM to 100 mM. The same results were obtained at 30 degrees C, although the ligand-receptor complex was not stable at Ca2+ concentrations below 10 microM. These binding data were confirmed by kinetic experiments. The rate constants calculated for a pseudo-first-order and a second-order reactions were identical and yielded fourfold lower k-1/k+1 (KD) values than the equilibrium experiments performed using 1 nM and 0.4 microM Ca2+, but the same values using 1 mM Ca2+. 1 mM Ca2+ increased the k-1/k+1 (KD) by decreasing 10-fold the association rate at 4 degrees C. The dissociation rate was increased about 10-fold by 5 microM devapamil or 100 microM D-cis-diltiazem, suggesting that the high affinity site is negatively regulated allosterically by millimolar Ca2+ concentrations and by the occupation of a second low-affinity site. Incubation of the CaCB receptors in the absence of Ca2+ and devapamil at 30 degrees C, but not at 4 degrees C, resulted in an apparent loss of devapamil-binding sites. The decrease in binding sites was caused by a reduced affinity. This apparent loss of binding sites was prevented by the addition of Ca2+ with an apparent median effective concentration of 0.4 microM. The apparent half-maximal inactivation times of the devapamil-binding site were 90 s and 12 min in the presence of 1 nM and 0.4 microM Ca2+, respectively. These results show that micromolar Ca2+ concentrations stabilize the CaCB receptor in a conformation which allows high-affinity binding of phenylalkylamines. Millimolar Ca2+ concentrations induce a low-affinity state of the devapamil-binding site on a stable CaCB receptor.  相似文献   

18.
The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 microM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 microM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2(+)-hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2(+)-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.  相似文献   

19.
The membraneous guanylate cyclase of cilia from Paramecium tetraurelia used MgGTP and MnGTP as substrate with Michaelis constants for GTP of 71.5 microM and 36 microM, respectively. A linear Arrhenius plot indicated that a single enzyme entity exists not sensitive to possible phase transitions of membrane lipids. Guanylate cyclase is activated by low concentrations (less than 100 microM) and inhibited by high concentrations (greater than 100 microM) of calcium, half-maximal effects were obtained with 8 microM and 500 microM Ca2+, respectively. Only strontium ions displayed partial activating and inhibiting potency, all other divalent cations tested, Ba2+, Fe2+, Co2+, Mn2+, Sn2+ and Ni2+ had no effect on guanylate cyclase activity. Ca2+ activation increased V; Km remained identical. The Ca2+ stimulated activity was not inhibited by trifluoperazine, tentatively suggesting that the stimulation may not be mediated by calmodulin. Ca2 inhibition was due to a single binding site of Ca2+ at the guanylate cyclase as evidence by a Hill coefficient h = -1 and was noncompetitive. The lanthanides La3+, Ce3+ and Tb3+ were powerful inhibitors of guanylate cyclase, with La3+ the half-maximal effect was obtained with 0.6 microM, it was kinetically a mixed-type inhibition. La3+ and CA2+ competed for the same binding site on the guanylate cyclase as determined by detailed kinetic analysis. Addition of EDTA reversed the activation and inhibition by Ca2+ and the inhibition by La3+. It is discussed that guanylate cyclase may be the initial target enzyme in the cilia for the calcium transient of the calcium-potassium action potential of Paramecium.  相似文献   

20.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号