共查询到20条相似文献,搜索用时 15 毫秒
1.
During early vertebrate development, a series of neuromeres divides the central nervous system from the forebrain to the spinal cord. Here we examine in more detail the expression of Wnt-3, a member of the Wnt gene family of secreted proteins, in the developing diencephalon, in comparison to the expression of the homeobox gene Dlx-1. In 9.5-day mouse embryos, Wnt-3 is expressed in a restricted area of the diencephalon before any morphological signs of subdivisions appear. Around embryonic day 11.5, Wnt-3 expression becomes restricted to one of the neuromeres of the diencephalon, the dorsal thalamus. Dlx-1 is expressed in a non-overlapping area immediately anterior to and abutting the Wnt-3 expressing domain, corresponding to the ventral thalamus. In addition, Wnt-3 is expressed in the midbrain-hindbrain region. In the adult mouse, Wnt-3 and Dlx-1 are expressed in subsets of neural cells derived from the original areas of expression in the diencephalon. Taken together, our results suggest that Wnt-3 and Dlx-1 provide positional information for the regional specification of neuromeres in the forebrain. The continued expression of these genes in the adult mouse brain suggests a distinct role in the mature CNS. 相似文献
2.
3.
Rath MF Muñoz E Ganguly S Morin F Shi Q Klein DC Møller M 《Journal of neurochemistry》2006,97(2):556-566
Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis. 相似文献
4.
5.
Cecchi C Mallamaci A Boncinelli E 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1999,322(10):837-842
Over the last few years great progress has been made in the understanding of the formation of the mouse forebrain. Among the genes involved in this process, the mouse Emx homeobox genes Emx1 and particularly Emx2 play a primary role. Here we describe the mRNA and protein expression related to Emx2 in the developing mouse telencephalon, as well as the results obtained studying the corresponding knock-out mice. Our findings indicate a role for this gene in the specification of the forebrain via the control of cell proliferation, as well as in guiding neuronal migration during development through the cortical plate. These studies will hopefully enable us to better understand the molecular mechanisms underlying the formation of the mouse cerebral cortex as well as to establish relevant interactions between the various proteins present in this region of the brain. 相似文献
6.
Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. 总被引:12,自引:0,他引:12
Newborn cerebral cortical neurons migrate along radial glia to the cortical plate. Experiments using a collagen gel assay revealed that the choroid plexus repelled cerebral cortical neurons and olfactory interneuron precursors, which were mimicked by Neuro-2A cells. Fractionation of Neuro-2A-conditioned medium identified a protein of 190 kDa, equivalent to full-length Slit proteins. Indeed, it cross-reacted with an antibody against Slit2, suggesting that it is either Slit2 or another Slit protein. Further, Slit2, expressed in COS cells, repelled cerebral cortical neurons and olfactory interneuron precursors. Thus, Slit2, which is expressed by the choroid plexus and the septum, acts as a chemorepulsive factor for neuronal migration. These results suggest chemorepulsion as a guidance mechanism for neuronal migration in the developing forebrain. 相似文献
7.
8.
A regulatory region from the mouse Hox-2.2 promoter directs gene expression into developing limbs 总被引:5,自引:0,他引:5
To characterize cis-acting regulatory elements of the murine homeobox gene, Hox-2.2, transgenic mouse lines were generated that contained the LacZ reporter gene under the control of different fragments from the presumptive Hox-2.2 promoter. A promoter region of 3600 base pairs (bp) was identified, which reproducibly directed reporter gene expression into specific regions of developing mouse embryos. At 8.5 days postcoitum (p.c.) reporter gene activity was detected in posterior regions of the lateral mesoderm and, in subsequent developmental stages, expression of the LacZ gene was restricted to specific regions of the developing limb buds and the mesenchyme of the ventrolateral body region. This pattern of Hox-2.2-LacZ expression was found in all transgenic embryos that have been generated with the 3.6 kb promoter fragment (two founder embryos and embryos from five transgenic lines). In addition, embryos from two transgenic mouse lines expressed the reporter gene at low levels in the developing central nervous system (CNS). Our results are consistent with the idea that in addition to their presumptive role in CNS and vertebrae development, Hox-2.2 gene products are involved in controlling pattern formation in developing limbs. 相似文献
9.
10.
The inner ear of all jawed vertebrates arises from the epithelium of the otic vesicle and contains three semicircular canals, otoliths, and sets of sensory neurons, all positioned precisely within the cranium to detect head orientation and movement. The msh-C gene and two new homebox genes, msh-D and a gene related to distal-less, dlx-3, are each expressed in distinct regions of the otic vesicle during its early development in zebrafish embryos. Cells in the ectoderm express dlx-3 before induction of the otic vesicle, suggesting that dlx-3 has an early function in this process. Later, cells aligned with the future axes of the semicircular canals specifically express either dlx-3 or msh-D. Even later, sensory hair cells express msh-C and msh-D, while other cells of the epithelium express dlx-3. The early expression of these genes could specify the orientation and morphogenesis of the inner ear, whereas their later expression could specify the fates of particular cell types. 相似文献
11.
12.
The expression domains of genes implicated in forebrain patterning often share borders at specific anteroposterior positions. This observation lies at the heart of the prosomeric model, which proposes that such shared borders coincide with proposed compartment boundaries and that specific combinations of genes expressed within each compartment are responsible for its patterning. Thus, genes such as Emx1, Emx2, Pax6, and qin (Bf1) are seen as being responsible for specifying different regions in the forebrain (diencephalon and telencephalon). However, the early expression of these genes, before the appearance of putative compartment boundaries, has not been characterized. In order to determine whether they have stable expression domains before this stage, we have compared mRNA expression of each of the above genes, relative both to one another and to morphological landmarks, in closely staged chick embryos. We find that, between HH stage 8 and HH stage 13, each of the genes has a dynamic spatial and temporal expression pattern. To test for autonomy of gene expression in the prosencephalon, we grafted tissue from this region to more caudal positions in the neural tube and analyzed for expression of Emx1, Emx2, qin, or Pax6. We find that gene expression is autonomous in prosencephalic tissue from as early as HH stage 8. In the case of Emx1, our data suggest that, from as early stage 8, presumptive telencephalic tissue also is committed to express this gene. We propose that early patterning along the anteroposterior axis of the presumptive telencephalon occurs across a field that is subdivided by different combinations of genes, with some overlapping areas, but without either sharp boundaries or stable interfaces between expression domains. 相似文献
13.
F. Lézot B.L. Thomas C. Blin‐Wakkach B. Castaneda A. Bolanos D. Hotton P.T. Sharpe D. Heymann G.F. Carles A.E. Grigoriadis A. Berdal 《Journal of cellular physiology》2010,223(3):779-787
Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time‐ and site‐specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. J. Cell. Physiol. 223:779–787, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
14.
15.
16.
W R Osborne 《Current opinion in biotechnology》1991,2(5):708-712
Significant advances have been made in precisely defining the elements in the Moloney murine leukemia virus genome responsible for tissue-restricted expression. This knowledge should lead to improved expression vectors for gene transfer in mammalian cells. In the past year, retrovirus-mediated gene expression in a diverse range of cell types has been reported. These cells have been used to study gene transfer relevant to a range of inherited diseases. 相似文献
17.
Some plant homeobox genes are expressed specifically in vascular cells and are assumed to function in the differentiation of specific types of vascular cells. However, homeobox genes exhibiting primary phloem-specific expression have not been reported. To elucidate the molecular mechanisms of vascular development, we undertook to isolate from Zinnia elegans primary phloem-specific homeobox genes that may function in phloem development. An HD-Zip type homeobox gene, ZeHB3, was isolated. This gene encodes a class I HD-Zip protein, and constitutes a gene subfamily with the Daucus carota gene CHB6, and Arabidopsis thaliana genes Athb-5, Athb-6, and Athb-16. In situ hybridization of 1-, 14- and 50-day-old plants demonstrated that ZeHB3 mRNA accumulation is restricted to a few cells destined to differentiate into phloem cells and to the immature phloem cells surrounding the sieve elements and companion cells. ZeHB3 protein was also localized to immature phloem cells. These findings clearly indicate that ZeHB3 is a novel homeobox gene that marks, and may function in, the early stages of phloem differentiation. 相似文献
18.
Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. 总被引:11,自引:0,他引:11 下载免费PDF全文
We report the isolation, sequence, and pattern of gene expression of members of the KNOTTED1 (KN1)-type class 1 homeobox gene family from rice. Phylogenetic analysis and mapping of the rice genome revealed that all of the rice homeobox genes that we have isolated have one or two direct homologs in maize. Of the homeobox genes that we tested, all exhibited expression in a restricted region of the embryo that defines the position at which the shoot apical meristem (SAM) would eventually develop, prior to visible organ formation. Several distinct spatial and temporal expression patterns were observed for the different genes in this region. After shoot formation, the expression patterns of these homeobox genes were variable in the region of the SAM. These results suggest that the rice KN1-type class 1 homeobox genes function cooperatively to establish the SAM before shoot formation and that after shoot formation, their functions differ. 相似文献
19.
The kinetics of mammalian gene expression. 总被引:3,自引:0,他引:3
J L Hargrove M G Hulsey E G Beale 《BioEssays : news and reviews in molecular, cellular and developmental biology》1991,13(12):667-674