首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular characteristics of the monolayers of astaxanthin with polar group on the beta-ionone ring in the molecule and beta-carotene without polar group and their interactions in mixed carotenoid-phospholipid monolayers and the effects of carotenoids on the phase behavior of the phospholipid bilayers were examined by the monolayer technique and differential scanning calorimetry (DSC). We found from the monolayer study that beta-carotene had an amphiphilic nature. The molecular assembly of astaxanthin in the monolayer at the hydrophobic/hydrophilic interface was more stable than that of beta-carotene. Dimyristoylphosphatidylcholine (DMPC) in the monolayer was miscible with astaxanthin in the range of 0-0.4 mol fractions of astaxanthin, but not fully miscible with beta-carotene even at low concentrations below 0.1 mol fraction of beta-carotene. Surface potential and compression/expansion cycles of beta-carotene monolayer indicated the formation of molecular aggregates by itself. DSC study showed that when small amount of astaxanthin was added, the transition temperature of dipalmitoylphosphatidylcholine (DPPC) was markedly shifted to lower temperatures and that the transition peak was asymmetrically broadened, indicative of a significant depression in cooperativity of the gel to liquid-crystalline transition. The asymmetric DSC endothermic bands of DPPC incorporating small amounts of astaxanthin were well fit by deconvolution into two to three domains containing different concentrations of astaxanthin. On the contrary, the incorporation of beta-carotene resulted in a small depression of the main transition temperature with a slight broadening of the transition peak, suggesting a small miscibility of beta-carotene with the phospholipid bilayer or a formation of aggregates of beta-carotene in the membranes. These results suggest that there would be a high localized concentration in the phase separated membrane for astaxanthin or beta-carotene to function effectively as scavenger.  相似文献   

2.
The interaction of the glycoalkaloid tomatine with monolayers of a phospholipid (dimyristoylphosphatidylcholine, DMPC), and sphingolipid (egg sphingomyelin), and cholesterol is compared. Using measurements of the surface pressure response as a function of the subphase concentration of tomatine, interfacial binding constants are estimated for mixed monolayers of DMPC and cholesterol and for those of egg sphingomyelin and cholesterol of mole ratio 7:3. The binding constants obtained suggest a stronger interaction of tomatine with DMPC and cholesterol mixed monolayers, reflecting easier displacement of cholesterol from its interaction with DMPC than from its interaction with egg sphingomyelin. Mixtures of tomatine and cholesterol are found to spread directly at the water-air interface and form stable monolayers, suggesting that cholesterol holds tomatine at the interface despite the absence of observed monolayer behavior for tomatine alone. The interaction of tomatine with DMPC and cholesterol monolayers is found to exhibit a pH dependence in agreement with previously reported results for its interaction with liposomes; in particular, the interaction is much less at pH 5 than at pH 7 or pH 9. It is found that while tomatine interacts strongly with monolayers containing sitosterol, it does not interact with monolayers containing sitosterol glucoside. The response of monolayers of varying composition of DMPC and cholesterol to tomatine is also examined. Brewster angle microscopy (BAM) reveals further evidence for formation of suspected islands of tomatine + cholesterol complexes upon interaction with mixed monolayers of lipid and sterol.  相似文献   

3.
Colipase, a cofactor of pancreatic triacylglycerol lipase, binds to surfaces of lipolysis reactants, like fatty acid and diacylglycerol, but not to the nonsubstrate phosphatidylcholine. The initial rate of colipase binding to fluid, single-phase lipid monolayers was used to characterize the interfacial requirements for its adsorption. Colipase adsorption rates to phosphatidylcholine/reactant mixed monolayers depended strongly on lipid composition and packing. Paradoxically, reactants lowered colipase adsorption rates only if phosphatidylcholine was present. This suggests that interactions between phosphatidylcholine and reactants create dynamic complexes that impede colipase adsorption. Complex formation was independently verified by physical measurements. Colipase binding rate depends nonlinearly on the two-dimensional concentration of phosphatidylcholine. This suggests that binding is initiated by a cluster of nonexcluded surface sites smaller than the area occupied by a bound colipase. Binding rates are mathematically consistent with this mechanism. Moreover, for each phosphatidylcholine-reactant pair, the complex area obtained from the analysis of binding rates agrees well with the independently measured collapse area of the complex. The dynamic complexes between phosphatidylcholine and lipids, like diacylglycerols, exist independently of the presence of colipase. Thus, our results suggest that lipid complexes may regulate the fluxes of other proteins to membranes during, for example, lipid-mediated signaling events in cells.  相似文献   

4.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of cAMP analogues on phosphatidylcholine formation via the CDP-choline pathway was investigated in cultured monolayers of rat hepatocytes. Treatment with chlorophenylthio-cAMP or the cAMP phosphodiesterase inhibitor, aminophylline, reduced the total uptake of [methyl-3H]choline by 32 and 26% (p less than 0.01), respectively. Chlorophenylthio-cAMP inhibited the incorporation of [methyl-3H]choline into phosphatidylcholine by 2.5-fold (p less than 0.001) and reduced the rate of phosphatidylcholine biosynthesis by approximately 40%. Aminophylline, 8-bromoadenosine 3':5'-monophosphate and N6,O2'-dibutyryladenosine 3':5'-monophosphate also inhibited [methyl-3H]choline incorporation into phosphatidylcholine. Although choline kinase and phosphocholinetransferase activities were stimulated by chlorophenylthio-cAMP treatment, CTP: phosphocholine cytidylyltransferase activity was reduced 46% (p less than 0.01). The results indicate that cytidylyltransferase may be phosphorylated and inhibited by cAMP-dependent protein kinases.  相似文献   

6.
The interaction of bovine prothrombin with phospholipids was measured, using as the lipid source monolayers spread at the air-buffer interface. Fluorescence spectroscopy was implemented to determine the equilibrium concentration of free prothrombin in the aqueous subphase of the protein-monolayer suspensions, in a continuous assay system. The increase in surface pressure (pi) from the protein-monolayer adsorption was also measured and, with values of the adsorbed protein concentration (c[s]), was used to calculate dc(s)/d(pi). At a particular phosphatidylserine (PS) content of liquid-expanded (LE) phosphatidylcholine (PC)/PS monolayers, dc(s)/d(pi) was independent of the initial surface pressure (pi[i]), when this latter value exceeded 30 mN/m. However, dc(s)/d(pi) varied significantly with the relative PS content of the monolayer. Values of the equilibrium dissociation constants calculated from the concentration dependence of delta(pi) indicated that the affinity of prothrombin for LE monolayers was higher at higher PS contents and lower packing densities. The affinity of prothrombin for liquid-condensed (LC) PC/PS monolayers was found to be much weaker relative to LE monolayers of similar phospholipid composition. This approach, employing spread monolayers to study prothrombin-phospholipid binding, coupled with a simple and accurate method to determine the free protein concentration in protein-monolayer suspensions, offers significant advantages for the investigation of protein-membrane interaction. The equilibrium characteristics that describe the interaction of prothrombin with the different phospholipid monolayers under various conditions also provide support for previous results which indicated that hydrophobic interactions are involved in the adsorption of vitamin K-dependent coagulation and anticoagulation proteins to model membrane systems.  相似文献   

7.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis.  相似文献   

8.
1. The surface potentials of mixed monolayers of synthetic phospholipids with lipids that are fusogenic for hen erythrocytes were investigated. 2. At pH 5.6 and 10, but not at pH2, mixed monolayers of the fusogenic lipid, glycerol mono-oleate, with phosphatidylcholine exhibited negative deviations from the ideality rule in surface potential per molecule which were accompanied by negative deviations in mean molecular area. 3. Interactions of this type were not seen with chemically related but non-fusogenic lipids, nor were they found in mixed monolayers of any of the lipids with phosphatidylethanolamine. 4. Experiments with dihexadecyl phosphate and hexadecyltrimethyl-ammonium indicated that the complete head group of phosphatidylcholine is required for its observed behaviour with fusogenic lipids. 5. Bivalent cations (Ca2+, UO2(2+) or Zn2+) in the subphase at pH 5.6 significantly modified the behaviour of mixed monolayers of fusogenic lipids with phospholipids; there was a parallel perturbing effect of fusogenic lipids on interactions between monolayers of phospholipids and bivalent cations. 6. Possible molecular interactions of fusogenic lipids with membrane phospholipids, and the role of Ca2+, are discussed which may be relevant to cell fusion in erythrocytes induced by low-melting lipids in the presence of Ca2+.  相似文献   

9.
Mixed micelles of the nonionic surfactant Triton X-100 and egg phosphatidylcholine were isolated by column chromatography on 6% agarose and by centrifugation at 35,000g. It was found that egg phosphatidylcholine bilayers are able to incorporate Triton X-100 at molar ratios of Triton to phospholipid below about 1:1, whereas above a molar ratio of about 2:1 Triton/phospholipid all of the phospholipid is converted into mixed micelles. Mixed micelles at a molar ratio of about 10:1 Triton/phospholipid were found to be in the same size range as pure micelles of Triton X-100. The formation of mixed micelles with dipalmitoyl phosphatidylcholine at room temperature, when the phospholipid is below its thermotropic phase transition, is shown to require relatively high concentrations of Triton X-100. The point at which dimyristoyl phosphatidylcholine bilayers are converted to mixed micelles was found to be less clear cut than with egg phosphatidylcholine, but above a molar ratio of about 2:1 Triton/phospholipid, all of this phospholipid is also in mixed micelles. The relevance of these results to the solubilization of membrane-bound proteins with Triton X-100 and the action of phospholipase A2, which hydrolyzes phosphatidylcholine when it is in mixed micelles with Triton X-100, is discussed.  相似文献   

10.
The conditions of formation of amphotericin B-cholesterol or -ergosterol complexes in monolayers are investigated by the penetration into a monolayer of egg phosphatidylcholine/sterol of 14C-labelled N-fructosyl-amphotericin B dissolved in the aqueous subphase. An increase of both surface pressure and radioactivity as a function of concentration are observed simultaneously while a 'saturation' effect occurs only for the surface pressure. The experiments are not accurate enough to make conclusions about the number of actually penetrated amphotericin B molecules. Therefore, the existence of an amphotericin B-sterol complex was evidenced from a study of surface pressure area per molecule isotherm. The results indicate that a complex with a 2:1 stoichiometry is formed and that the amphotericin B-ergosterol interaction is larger than the amphotericin B-cholesterol interaction. The complex is dissociated by addition of egg phosphatidylcholine due to a competition between egg phosphatidylcholine and amphotericin B for sterol.  相似文献   

11.
We present a first study using synchrotron grazing incidence diffraction and X-ray reflectivity measurements on mixed phospholipid/peptide monolayers at the air/water interface. The thermodynamic properties of the pure and mixed monolayers were characterized using the classical film balance technique. Surface pressure/potential-area isotherms showed that the antimicrobial frog skin peptide PGLa formed a very stable monolayer with two PGLa molecules per kinetic unit and a collapse pressure of ~22 mN/m. X-ray grazing incidence diffraction indicated that the peptide-dimer formation did not lead to self-aggregation with subsequent crystallite formation. However, the scattering length density profiles derived from X-ray reflectivity measurements yield information on the PGLa monolayer that protrudes into the air phase by about 0.8 nm, suggesting that the peptide is aligned parallel to the air/water interface. The monolayers, composed of disaturated phosphatidylcholines or phosphatidylglycerols, were stable up to 60 mN/m and exhibited a first-order transition from a liquid-expanded to a liquid-condensed state around 10 mN/m. Structural details of the phospholipid monolayers in the presence and absence of PGLa were obtained from synchrotron experiments. Thereby, the X-ray data of distearoylphosphatidylcholine/PGLa can be analyzed by being composed of the individual components, while the peptide strongly perturbed the lipid acyl chain order of distearoylphosphatidylglycerol. These results are in agreement that PGLa mixes at a molecular level with negatively charged lipids, but forms separate islands in zwitterionic phosphatidylcholine monolayers and demonstrates that antimicrobial peptides can discriminate between the major phospholipid components of bacterial and mammalian cytoplasmic membranes.  相似文献   

12.
T Handa  H Saito    K Miyajima 《Biophysical journal》1993,64(6):1760-1765
Triolein (TO) and phospholipids (egg yolk phosphatidylcholine, egg yolk phosphatidylethanolamine, and bovine brain phosphatidylserine) had low mutual solubilities and separated into the TO-liquid phase and phospholipid-bilayers. Spreading pressures of the TO-phospholipid mixture (i.e., surface pressures of the mixed monolayer in equilibrium with the phase-separating lipid mixture) at the air/saline interface were independent of the lipid composition. On the other hand, collapse pressures of the mixed monolayer of TO and phospholipid (i.e., surface pressures of the mixed monolayer in equilibrium with the TO-liquid phase) at the interface changed with the monolayer composition and were lower than the spreading pressure. The experimental data indicated the spreading and collapse pressures as offering a phase diagram for the presence of equilibrium between the mixed monolayer, the phospholipid-bilayers and the TO-liquid phase. The diagram showed that TO and the phospholipids were miscible in the mixed monolayer, forming an eutectic mixed monolayer. When the mixed monolayer initially had the eutectic composition, no collapse of the monolayer was detected until the surface pressure reached the value of the spreading pressure. No specific complex between TO and the phospholipid is required to explain the stability and collapse of the mixed monolayers. The bulk immiscibility of the lipids elucidated by the spreading pressure-measurements, immediately leads to the phase behaviors observed.  相似文献   

13.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/ dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis  相似文献   

14.
Increasing methylation of the headgroup in DPPE results in an increase of minimum area per molecule in highly compressed monolayers at the air-water interface. The shape of solid domains, as observed by epifluorescence microscopy, also exhibits marked changes upon increasing headgroup methylation. Branching domains are observed in DPPE and DP(Me)PE, whereas U-shaped or round domains are observed in DP(Me)2PE and DPPC under our experimental conditions. The domain shape is determined more by the headgroup methylatin than by the corresponding shift in critical temperatures, as shown by the study of PCs of different acyl chain moieties. In mixed lipid monolayers, PC (phosphatidylcholine) and PE (phosphatidylethanolamine) do not mix ideally, as indicated by the non-linear variation of the average area per molecule with composition, and by distinct domain shapes in LE/LC (liquid expanded/liquid condensed) coexisting phases representing PE-enriched or PC-enriched domains in those mixed monolayers.  相似文献   

15.
Monolayers of phosphatidylcholine, tyrosine, and phenylalanine and binary mixtures phosphatidylcholine–tyrosine or phosphatidylcholine–phenylalanine were investigated at the air/water interface. Phosphatidylcholine (lecithin, PC), tyrosine (Tyr), and phenylalanine (Phe) were used in the experiment. The surface tension values of pure and mixed monolayers were used to calculate π–A isotherms. The surface tension measurements were carried out at 22°C using an improved Teflon trough and a Nima 9000 tensiometer. The Teflon trough was filled with a subphase of triple-distilled water. Known amounts of lipid dissolved in 1-chloropropane were placed at the surface using a syringe. The interactions between lecithin and amino acid result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants of PC–Tyr as well as PC–Phe complexes. We considered the equilibrium between the individual components and the complex and established that lecithin and amino acid formed highly stable 1:1 complex.  相似文献   

16.
1. The behaviour of mixed monolayers of 14 different lipids with preparations of erythrocyte lipids, purified natural and synthetic phospholipids, cholesterol and galactosylceramide was investigated. 2. The mean areas occupied per molecule in mixed films containing lipids that are fusogenic for hen erythrocytes were compared with those for corresponding films containing lipids that are inactive as fusogens. 3. Fusogenic lipids were found to exhibit interactions, which were not shown by non-fusogenic lipids, in mixed monolayers with several species of phospholipid, particularly those containing a choline head group. 4. Heterogeneity in the hydrophobic chains of phosphatidylcholine, their degree of unsaturation and the presence of cholesterol had little effect on the interaction of phosphatidylcholine with fusogenic lipids. 5. Fusogenic lipids showed little specific interaction with natural or synthetic preparations of phosphatidylethanolamine. 6. The possible significance of these observations in relation to the action of fusogenic lipids on biological membranes is discussed in the light of the asymmetrical distribution of phospholipids in erythrocyte membranes.  相似文献   

17.
The effect of monovalent ion (Li+, Na+, Cs+) interaction with monolayers of phosphatidylcholine (lecithin, PC) was investigated at the air/water interface. We present surface tension measurements of lipid monolayers obtained using a Langmuir method as a function of monovalent ion concentration. Measurements were carried out at 22 °C using a Teflon trough and a Nima 9000 tensiometer. Interactions between lecithin and monovalent ions result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants and area occupied by one molecule of PC–monovalent ion complexes (PC?Me+).  相似文献   

18.
In this study stereochemically pure d-erythro-sphingomyelins (SMs) with either 16:0 or 18:1(cisDelta9) as the N-linked acyl-chain were synthesized. Our purpose was to examine the properties of these sphingomyelins and acyl-chain matched racemic (d-erythro/l-threo) sphingomyelins in model membranes. Liquid-expanded d-erythro-N-16:0-SM in monolayers was observed to pack more densely than the corresponding racemic sphingomyelin. Cholesterol desorption to beta-cyclodextrin was significantly slower from d-erythro-N-16:0-SM monolayers than from racemic N-16:0-SM monolayers. Significantly more condensed domains were seen in cholesterol/d-erythro-N-16:0-SM monolayers than in the corresponding racemic mixed monolayers, when [7-nitrobenz-2-oxa-1, 3-diazol-4-yl]phosphatidylcholine was used as a probe in monolayer fluorescence microscopy. With monolayers of N-18:1-SMs, both the lateral packing densities (sphingomyelin monolayers) and the rates of cholesterol desorption (mixed cholesterol/sphingomyelin monolayers) was found to be similar for d-erythro and racemic sphingomyelins. The phase transition temperature and enthalpy of d-erythro-N-16:0-SM in bilayer membranes were slightly higher compared with the corresponding racemic sphingomyelin (41.1 degrees C and 8.4 +/- 0.4 kJ/mol, and 39.9 degrees C and 7.2 +/- 0.2 kJ/mol, respectively). Finally, d-erythro-sphingomyelins in monolayers (both N-16:0 and N-18:1 species) were not as easily degraded at 37 degrees C by sphingomyelinase (Staphylococcus aureus) as the corresponding racemic sphingomyelins. We conclude that racemic sphingomyelins differ significantly in their biophysical properties from the physiologically relevant d-erythro sphingomyelins.  相似文献   

19.
Monolayers, fluorescence polarization, differential scanning calorimetry and X-ray diffraction experiments have been carried out to examine the effect of the polypeptide antibiotic polymyxin B on the phase behaviour of dipalmitoylphosphatidylglycerol (DPPG) either pure or mixed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). It is shown that in both phosphatidylglycerol alone and phosphatidylglycerol/phosphatidylcholine mixtures, polymyxin B can induce either phase separation between lipid domains of various compositions or interdigitation of the acyl chains in the solid state, without segregation of the two lipids. Phase separation was observed by fluorescence and differential scanning calorimetry after addition of the antibiotic to vesicles composed of mixtures of DMPC and DPPG in conditions where polymyxin B did not saturate phosphatidylglycerol (DPPG to polymyxin B molar ratio, Ri, higher than 15). Phase separation was also observed in mixed monolayers of DPPC and of the 5:1 DPPG/polymyxin B complex, at high surface pressure. Acyl chain interdigitation was observed by X-ray diffraction in both 5:1 DPPG/polymyxin B mixtures and preformed 5:5:1 DMPC/DPPG/polymyxin B mixture, in which the antibiotic saturates phosphatidylglycerol (Ri 5). In both cases, raising the temperature gave rise to a complex double-peaked phase transition by differential scanning calorimetry, from the interdigitating phase to a normal L alpha lamellar phase. As it is known that polymyxin B does not interact with phosphatidylcholine, the data presented show that, when phosphatidylcholine and phosphatidylglycerol are mixed together, a phase perturbation such as acyl chain interdigitation, which normally affects only phosphatidylglycerol, is also felt by phosphatidylcholine.  相似文献   

20.
《Biophysical journal》2021,120(21):4751-4762
A mesoscopic model with molecular resolution is presented for dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl oleoyl phosphatidylcholine (POPC) monolayer simulations at the air-water interface using many-body dissipative particle dynamics (MDPD). The parameterization scheme is rigorously based on reproducing the physical properties of water and alkane and the interfacial property of the phospholipid monolayer by comparison with experimental results. Using much less computing cost, these MDPD simulations yield a similar surface pressure-area isotherm as well as similar pressure-related morphologies as all-atom simulations and experiments. Moreover, the compressibility modulus, order parameter of lipid tails, and thickness of the phospholipid monolayer are quantitatively in line with the all-atom simulations and experiments. This model also captures the sensitive changes in the pressure-area isotherms of mixed DPPC/POPC monolayers with altered mixing ratios, indicating that the model is promising for applications with complex natural phospholipid monolayers. These results demonstrate a significant improvement of quantitative phospholipid monolayer simulations over previous coarse-grained models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号