首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progression in a checkpoint-independent manner, without altering replicon size. In contrast, topo IIα depletion accelerated origin cluster activation, and topo IIα add-back negated overinitiation. Therefore, topo IIα is not required for DNA replication, but topo IIα clamps slow replication, probably by forming roadblocks. ICRF-193 had no effect on DNA synthesis when added after nuclear assembly, confirming that topo IIα activity is dispensable for replication and revealing that topo IIα clamps formed on replicating DNA do not block replication, presumably because topo IIα acts behind and not in front of forks. Topo IIα depletion increased, and topo IIα addition reduced, chromatin loading of MCM2-7 replicative helicase, whereas ICRF-193 did not affect MCM2-7 loading. Therefore, topo IIα restrains MCM2-7 loading in an ICRF-193-resistant manner during origin licensing, suggesting a model for establishing the sequential firing of origin clusters.  相似文献   

2.
A number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks. Despite the biological and clinical importance, the molecular mechanisms for the repair of topo II-mediated DNA damage remain largely unknown. Here, we perform genetic analyses using the chicken DT40 cell line to investigate how DNA lesions caused by topo II inhibitors are repaired. Notably, we show that LIG4-/- and KU70-/- cells, which are defective in nonhomologous DNA end-joining (NHEJ), are extremely sensitive to both VP-16 and ICRF-193. In contrast, RAD54-/- cells (defective in homologous recombination) are much less hypersensitive to VP-16 than the NHEJ mutants and, more importantly, are not hypersensitive to ICRF-193. Our results provide the first evidence that NHEJ is the predominant pathway for the repair of topo II-mediated DNA damage; that is, cleavable complexes and topo II clamps. The outstandingly increased cytotoxicity of topo II inhibitors in the absence of NHEJ suggests that simultaneous inhibition of topo II and NHEJ would provide a powerful protocol in cancer chemotherapy involving topo II inhibitors.  相似文献   

3.
Cohesin maintains sister chromatid cohesion until its Rad21/Scc1/Mcd1 is cleaved by separase during anaphase. DNA topoisomerase II (topo II) maintains the proper topology of chromatid DNAs and is essential for chromosome segregation. Here we report direct observations of mitotic progression in individual HeLa cells after functional disruptions of hRad21, NIPBL, a loading factor for hRad21, and topo II alpha,beta by RNAi and a topo II inhibitor, ICRF-193. Mitosis is delayed in a Mad2-dependent manner after disruption of either or both cohesin and topo II. In hRad21 depletion, interphase pericentric architecture becomes aberrant, and anaphase is virtually permanently delayed as preseparated chromosomes are misaligned on the metaphase spindle. Topo II disruption perturbs centromere organization leading to intense Bub1, but no Mad2, on kinetochores and sustains a Mad2-dependent delay in anaphase onset with persisting securin. Thus topo II impinges upon centromere/kinetochore function. Disruption of topo II by RNAi or ICRF-193 overrides the mitotic delay induced by cohesin depletion: sister centromeres are aligned and anaphase spindle movements occur. The ensuing accumulation of catenations in preseparated sister chromatids may overcome the reduced tension arising from cohesin depletion, causing the override. Cohesin and topo II have distinct, yet coordinated functions in metaphase alignment.  相似文献   

4.
We have analysed the role of topoisomerase II (topo II) in plasmid DNA replication in Xenopus egg extracts, using specific inhibitors and two-dimensional gel electrophoresis of replication products. Topo II is dispensable for nuclear assembly and complete replication of plasmid DNA but is required for plasmid unlinking. Extensive unlinking can occur in the absence of mitosis. Replication intermediates generated in the absence of topo II activity have an increased positive superhelical stress (+DeltaLk), suggesting a deficiency in precatenane removal. The geometry of replication intermediates cut by poisoning topo II with etoposide and purified by virtue of their covalent attachment to topo II subunits demonstrates that topo II acts behind the forks at all stages of elongation. These results provide direct evidence for unlinking replicating DNA by precatenane removal and reveal a division of labour between topo I and topo II in this eukaryotic system. We discuss the role of chromatin structure in driving DNA unlinking during S phase.  相似文献   

5.
Due to the essential role played by DNA topoisomerases (topos) in cell survival, the use of topoisomerase inhibitors as chemotherapeutic drugs in combination with radiation has become a common strategy for the treatment of cancer. Catalytic inhibitors of these enzymes would be promising to improve the effectiveness of radiation and therefore, it appears reasonable to incorporate them in combined modality trials. In this work, we have investigated the capacity of both ICRF-193 and Aclarubicin (ACLA), two catalytic inhibitors of topoisomerase II (Topo II), to modulate radiation response in Chinese hamster V79 cell line and its radiosensitive mutant irs2. We also have explored potential mechanisms underlying these interactions. Experiments were performed in the presence and absence of either ICRF-193 or ACLA, and topo II activity was measured using an assay based upon decatenation of kinetoplast DNA (kDNA). For the combined experiments cells were incubated for 3 h in the presence of various inhibitor concentrations and irradiated 30 min prior to the end of treatments and cell survival was determined by clonogenic assay. DNA-damaging activity was measured by single-cell gel electrophoresis. Our results demonstrate that combinations of catalytic inhibitors of topo II and radiation produce an increase in cell killing induced by ionising radiation. The mechanism of radiation enhancement may involve a direct or indirect participation of topo II in the repair of radiation-induced DNA damage.  相似文献   

6.
Shatrova A  Aksenov ND  Zenin VV 《Tsitologiia》2002,44(11):1068-1078
Studying the effect of topoisomerase II (topo II) inhibitors on cell passage through mitosis seems to be important for understanding the role of this enzyme during chromosome condensation and segregation. A flow cytometric assay (Zenin et al., 2001) allowed to determine the mitotic index, and to discriminate between not only cells in G2 and M phases (including metaphase and anaphase cells), but also cells in pseudo-G1 with 4c DNA content. It is shown that topo II catalytic inhibitor ICRF-193 blocks G2-M transition in a lymphoblastoid cell line GM-130. Addition of caffeine to cells abrogated a block of their entering mitosis but not the inhibitor action. Cells entered mitosis, which was proven by the presence of chromosomes in the examined specimen, and, bypassing anaphase, appeared in pseudo-G1 with 4c DNA content. We have found that in the presence of ICRF-193 cells, GM-130 and Hep-2 lines, previously blocked by nocodazole when in mitosis and then washed, pass through metaphase, enter anaphase and leave it to pass to pseudo-G1 with the 4c DNA content. Thus, by inhibiting topo II activity ICRF-193 causes abnormal mitotic transition.  相似文献   

7.
《The Journal of cell biology》1994,126(6):1341-1351
ICRF-193, a novel noncleavable, complex-stabilizing type topoisomerase (topo) II inhibitor, has been shown to target topo II in mammalian cells (Ishida, R., T. Miki, T. Narita, R. Yui, S. Sato, K. R. Utsumi, K. Tanabe, and T. Andoh. 1991. Cancer Res. 51:4909-4916). With the aim of elucidating the roles of topo II in mammalian cells, we examined the effects of ICRF-193 on the transition through the S phase, when the genome is replicated, and through the M phase, when the replicated genome is condensed and segregated. Replication of the genome did not appear to be affected by the drug because the scheduled synthesis of DNA and activation of cdc2 kinase followed by increase in mitotic index occurred normally, while VP-16, a cleavable, complex-stabilizing type topo II inhibitor, inhibited all these processes. In the M phase, however, late stages of chromosome condensation and segregation were clearly blocked by ICRF-193. Inhibition at the stage of compaction of 300-nm diameter chromatin fibers to 600-nm diameter chromatids was demonstrated using the drug during premature chromosome condensation (PCC) induced in tsBN2 baby hamster kidney cells in early S and G2 phases. In spite of interference with M phase chromosome dynamics, other mitotic events such as activation of cdc2 kinase, spindle apparatus reorganization and disassembly and reassembly of nuclear envelopes occurred, and the cells traversed an unusual M phase termed "absence of chromosome segregation" (ACS)-M phase. Cells then continued through further cell cycle rounds, becoming polyploid and losing viability. This effect of ICRF-193 on the cell cycle was shown to parallel that of inactivation of topo II on the cell cycle of the ts top2 mutant yeast. The results strongly suggest that the essential roles of topo II are confined to the M phase, when the enzyme decatenates intertwined replicated chromosomes. In other phases of the cycle, including the S phase, topo II may thus play a complementary role with topo I in controlling the torsional strain accumulated in various genetic processes.  相似文献   

8.
9.
Differentiation of Drosophila Schneider cells caused by DNA double-strand break (DSB)-inducing topoisomerase II (topo II) inhibitors were attenuated by ICRF-193, a non-DNA-damaging topo II inhibitor. ICRF-193 did not inhibit differentiation induced by neocarzinostatin (NCS), a drug that causes DNA DSBs independent of topo II. Schneider cells differentiated upon treatment with gamma-ray. These results suggest that DNA DSBs induce myogenic differentiation of Schneider cells. We also found DNA replication inhibitors, hydroxyurea (HU), aphidicolin, and ethylmethanesulfonate (EMS) induced myogenic differentiation of Schneider cells. HU-induced differentiation was inhibited upon pretreatment of cells with chemical inhibitors of PP 1/2A, p38 MAPK, JNK, and proteasome. RT-PCR analysis revealed that the expressions of fusion-competent myoblast-specific genes lmd, sns, and del were induced in Schneider cells upon treatment with NCS or HU, whereas expressions of three founder cell-specific genes, duf, ants, and rols, were undetectable. These results indicate that the expression of fusion competent-myoblast-specific genes is induced during myogenic differentiation of Drosophila Schneider cells by DNA DSBs or replication inhibition.  相似文献   

10.
Here we report that DNA decatenation is not a physical requirement for the formation of mammalian chromosomes containing a two-armed chromosome scaffold. 2-aminopurine override of G2 arrest imposed by VM-26 or ICRF-193, which inhibit topoisomerase II (topo II)–dependent DNA decatenation, results in the activation of p34cdc2 kinase and entry into mitosis. After override of a VM-26–dependent checkpoint, morphologically normal compact chromosomes form with paired axial cores containing topo II and ScII. Despite its capacity to form chromosomes of normal appearance, the chromatin remains covalently complexed with topo II at continuous levels during G2 arrest with VM-26. Override of an ICRF-193 block, which inhibits topo II–dependent decatenation at an earlier step than VM-26, also generates chromosomes with two distinct, but elongated, parallel arms containing topo II and ScII. These data demonstrate that DNA decatenation is required to pass a G2 checkpoint, but not to restructure chromatin for chromosome formation. We propose that the chromosome core structure is templated during interphase, before DNA decatenation, and that condensation of the two-armed chromosome scaffold can therefore occur independently of the formation of two intact and separate DNA helices.  相似文献   

11.
The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.  相似文献   

12.
Antineoplastic bis(dioxopiperazine)s, such as meso-2,3-bis(2,6-dioxopiperazin-4-yl)butane (ICRF-193), are widely believed to be only catalytic inhibitors of topoisomerase II. However, topoisomerase inhibitors have little or no antineoplastic activity unless they are topoisomerase poisons, a special subclass of topoisomerase-targeting drugs that stabilize topoisomerase-DNA strand passing intermediates and thus cause the topoisomerase to become a cytotoxic DNA-damaging agent. Here we report that ICRF-193 is a very significant topoisomerase II poison. Detection of topoisomerase II poisoning by ICRF-193 required the use of a chaotropic protein denaturant in the topoisomerase poisoning assays. ICRF-193 caused dose-dependent cross-linking of human topoisomerase IIbeta to DNA and stimulated topoisomerase IIbeta-mediated DNA cleavage at specific sites on (32)P-end-labeled DNA. Human topoisomerase IIalpha-mediated DNA cleavage was stimulated to a lesser extent by ICRF-193. In vivo experiments with MCF-7 cells also showed the requirement of a chaotropic protein denaturant in the assays and selectivity for the beta-isozyme of human topoisomerase II. Studies with two topoisomerase IIbeta-negative cell model systems confirmed significant topoisomerase II poisoning by ICRF-193 in the wild type cells and were consistent with beta-isozyme selectivity. Common use of only the detergent, SDS, in assays may have led to failure to detect topoisomerase II poisoning by ICRF-193 in earlier studies.  相似文献   

13.
14.
When DNA topoisomerase II (topo II) activity is inhibited with a non-DNA-damaging topo II inhibitor (ICRF-193), mammalian cells become checkpoint arrested in G2-phase. In this study, we analyzed chromosome structure in cells that bypassed this checkpoint. We observed a novel type of chromosome aberration, which we call Ω-figures. These are entangled chromosome regions that indicate the persistence of catenations between nonhomologous sequences. The number of Ω- figures per cell increased sharply as cells evaded the transient block imposed by the topo II-dependent checkpoint, and the presence of caffeine (a checkpoint-evading agent) potentiated this increase. Thus, the removal of nonreplicative catenations, a process that promotes chromosome individualization in G2, may be monitored by the topo II-dependent checkpoint in mammals. Received: 19 July 1999; in revised form: 20 October 1999 / Accepted: 7 January 2000  相似文献   

15.
Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving gamma-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.  相似文献   

16.
Treatment of Allium cepa meristematic cells in metaphase with the topoisomerase II inhibitor ICRF-193, results in bridging of the sister chromatids at anaphase. Separation of the sisters in experimentally generated acentric chromosomal fragments was also inhibited by ICRF-193, indicating that some non-centromeric catenations also persist in metaphase chromosomes. Thus, catenations must be resolved by DNA topoisomerase II at the metaphase-to-anaphase transition to allow segregation of sisters. A passive mechanism could maintain catenations holding sisters until the onset of anaphase. At this point the opposite tension exerted on sister chromatids could render the decatenation reaction physically more favorable than catenation. But this possibility was dismissed as acentric chromosome fragments were able to separate their sister chromatids at anaphase. A timing mechanism (a common trigger for two processes taking different times to be completed) could passively couple the resolution of the last remaining catenations to the moment of anaphase onset. This possibility was also discarded as cells arrested in metaphase with microtubule-destabilising drugs still displayed anaphase bridges when released in the presence of ICRF-193. It is possible that a checkpoint mechanism prevents the release of the last catenations linking sisters until the onset of anaphase. To test whether cells are competent to fully resolve catenations before anaphase onset, we generated multinucleate plant cells. In this system, the nuclei within a single multinucleate cell displayed differences in chromosome condensation at metaphase, but initiated anaphase synchronously. When multinucleates were treated with ICRF-193 at the metaphase-toanaphase transition, tangled and untangled anaphases were observed within the same cell. This can only occur if cells are competent to disentangle sister chromatids before the onset of anaphase, but are prevented from doing so by a checkpoint mechanism.  相似文献   

17.
Type II topoisomerases change DNA topology by passage of one DNA duplex (the transfer, T-segment) through a transient double-stranded break in another (the gate, G-segment). Here we monitor the passage between short double-stranded DNA segments within long single-stranded DNA circles that leads to catenation of the circles. To facilitate catenation, the circles were brought into close proximity using a tethering oligonucleotide, which was removed after the reaction was complete. We varied the length and the composition of the reacting DNA segments. The minimal DNA duplex length at which we detected catenation was 50-60 bp for DNA gyrase and 40 bp for topoisomerase IV (Topo IV). For Topo IV, catenation was observed when one, but not both, of the DNA-DNA duplexes was replaced by a DNA-RNA duplex. Topo IV cleaved the DNA-DNA duplex, but not the DNA-RNA duplex implying that the DNA-RNA duplex can be a T-segment but not a G-segment.  相似文献   

18.
19.
The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really "poisons" the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood.  相似文献   

20.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号