首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the greatest challenges in metabolomics is the rapid and unambiguous identification and quantification of metabolites in a biological sample. Although one-dimensional (1D) proton nuclear magnetic resonance (NMR) spectra can be acquired rapidly, they are complicated by severe peak overlap that can significantly hinder the automated identification and quantification of metabolites. Furthermore, it is currently not reasonable to assume that NMR spectra of pure metabolites are available a priori for every metabolite in a biological sample. In this paper we develop and report on tests of methods that assist in the automatic identification of metabolites using proton two-dimensional (2D) correlation spectroscopy (COSY) NMR. Given a database of 2D COSY spectra for the metabolites of interest, our methods provide a list sorted by a heuristic likelihood of the metabolites present in a sample that has been analyzed using 2D COSY NMR. Our models attempt to correct the displacement of the peaks that can occur from one sample to the next, due to pH, temperature and matrix effects, using a statistical and chemical model. The correction of one peak can result in an implied correction of others due to spin–spin coupling. Furthermore, these displacements are not independent: they depend on the relative position of functional groups in the molecule. We report experimental results using defined mixtures of amino acids as well as real complex biological samples that demonstrate that our methods can be very effective at automatically and rapidly identifying metabolites.  相似文献   

2.
The 1H nuclear magnetic resonance (NMR) spectra of biological samples, such as blood plasma and tissues, are information rich but data complex owing to superposition of the resonances from a multitude of different chemical entities in multiple-phase compartments, hampering detection and subsequent resonance assignments. To overcome these problems, several spectral-editing NMR experiments are described here, combining spin-relaxation filters (based on T(1), T(rho), and T(2)) with both one-dimensional and two-dimensional (2D) NMR spectroscopy. These techniques enable the separation of NMR resonances based on their relaxation times and allow simplification of the complex spectra. In this paper, the approach is exemplified using a control human blood plasma, which is a complex mixture of proteins, lipoproteins, and small-molecule metabolites. In the case of T(1rho)- and T(2)-edited 2D NMR experiments, a "flip-back" pulse was introduced after the relaxation editing to make the phase cycling of the "relaxation filter" and the 2D NMR part independent, thus enabling easy implementation of the phase-sensitive 2D NMR experiments. These methods also permit much higher receiver gains to be used to reduce digitization error, in particular, for the small resonances, which are sometimes vitally important for metabonomics studies. Both pulse sequences and experimental results are discussed for T(1)-, T(1rho)-, and T(2)-filtered COSY, T(2)-filtered phase-sensitive DQF-COSY, and T(1), T(1rho)-, and T(2)-filtered TOCSY NMR.  相似文献   

3.
4.
S D Emerson  G La Mar 《Biochemistry》1990,29(6):1545-1556
Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad (approximately 600-Hz) and rapidly relaxing (Tf1 approximately 3 ms) signals which show no NEOSY peaks, we demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipoar connectivities that allow unambiguous assignments. The COSY map was found to be generally less useful for the hyperfine-shifted residues, with cross peaks detected only for protons greater than 6 A from the iron. Nevertheless, numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within approximately 7.5 A of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds. In contrast, while exhibiting fortuitous 1H NMR spectral similarities, a major discrepancy was uncovered between the hyperfine shift pattern of the axially bound (F8 histidyl) imidazole in the protein and that of the imidazole in a relevant model compound [Chacko, V.P., & La Mar, G. N. (1982) J. Am. Chem. Soc. 104, 7002-7007], providing direct evidence for a protein-based deformation of axial bonding in the protein.  相似文献   

5.
Group B capsular polysaccharide of N. meningitidis was analyzed by 2D NMR spectroscopy. The 1H-NMR spectrum of the polymer was completely assigned by 2D homonuclear (COSY and HOHAHA) and heteronuclear (1H, 13C) NMR experiments.  相似文献   

6.
The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. In this paper, the resulting connectivity information is used as input for the new structure generating program Cocon which both improves and dramatically accelerates the process of constitutional assignment. Cocon allows to quantify the value of connectivity information (2D NMR correlation data) for structure elucidation problems. Applying Cocon, it is systematically evaluated to which degree the NMR experiments COSY, 1H,13C-HMBC and 1,1-ADEQUATE constrain the number of constitutions compatible with the data sets of two secondary metabolites from marine sponges.Electronic Supplementary Material available.  相似文献   

7.
One-dimensional and two-dimensional (2D) nmr experiments were carried out on an oligonucleotide duplex that contains an unpaired cytosine, d(GCGAAC AAGCG)·d(CGCTTTTCGC), which will be referred to as the C-bulge decamer. Evidence from one-dimensional nuclear Overhauser effect (NOE) experiments on the exchangeable protons indicates that the unpaired cytosine is extrahelical. This conclusion is also supported by numerous cross-peaks in the 2D NOE spectroscopy (NOESY) spectrum of the nonexchangeable protons. The assignments for all of the resonances, with the exception of the H5′ and H5″ resonances, have been made through the use of 2D NOESY, correlated spectroscopy (COSY), and relayed COSY experiments. The temperature dependence of the C(H6) resonance chemical shifts indicates that the unpaired cytosine shows unusual behavior compared to other cytosines in the duplex. A comparison of chemical shifts for all, the assigned resonances of the duplexes with and without the unpaired cytosine suggests that the majority of the structural perturbation is localized in the A·T tract surrounding the unpaired base. The behavior of the imino resonances as a function of temperature also indicates that the perturbation to the duplex is localized and destabilizes the A·T base pairs adjacent to the unpaired base. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Oxidized ferredoxin from Clostridium pasteurianum, containing two Fe4S4 clusters, has been investigated using 2D 1H NMR spectroscopy at 600 MHz. 2D NMR experiments allowed complete assignment of the sixteen isotropically shifted signals corresponding to the beta-CH2 protons of the eight metal coordinated cysteines. Geminal connectivities of Cys beta-CH2 protons were identified through magnitude COSY experiments and confirmed through 2D NOESY experiments. A few additional signals could be assigned to the corresponding alpha-CH protons. The importance of 2D experiments to achieve firm assignments of isotropically shifted signals in paramagnetic metalloproteins is stressed.  相似文献   

9.
The O-polysaccharide of Providencia stuartii O4 was obtained by mild acid degradation of the lipopolysaccharide, and the following structure of the pentasaccharide repeating unit was established: [structure: see text] where D-Qui4N(L-AspAc) is 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose, which has not been hitherto found in bacterial polysaccharides. Structural studies were performed using sugar and methylation analyses, Smith degradation and NMR spectroscopy, including conventional 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments as well as COSY and NOESY experiments run in an H(2)O-D(2)O mixture to reveal correlations for NH protons.  相似文献   

10.
Knowledge of three-dimensional structure is a key factor in protein engineering. It is useful, for example, in predicting and understanding the functional consequences of specific substitution of one or more amino acids of the polypeptide chain. It is also necessary for the design of new effectors or analogs of the substrates of enzymes and receptors. X-ray diffraction by crystals of the biomolecule was for a long time the only method of determining three-dimensional structures. In the last 5 years, it has been joined by a new technique, two-dimensional nuclear magnetic resonance (2D NMR), which can resolve the structure of middle-sized proteins (less than 10 kilodaltons). The technique is applied on solutions whose pH, ionic strength, and temperature can be chosen and changed. The two basic measurements, COSY and NOESY, detect respectively the systems of hydrogen nuclei, or protons, coupled through covalent bonds, and those in which the interproton distances are less than 0.5 nm. A systematic strategy leads from resonance assignments of the two-dimensional spectrum to molecular modeling with constraints and finally to the determination of the molecular structure in the solution. Much sophistication is needed even today for the first task, the assignment of the resonances. Each of the COSY and NOESY spectra is a two-dimensional map, where the diagonal line is the one-dimensional spectrum, and the off-diagonal peaks indicate connectives between protons. Peak assignment to a specific type of amino acid is based on the pattern of scalar couplings observed in the COSY spectrum. Next, the amino acids are positioned in the primary sequence, using the spatial proximities of polypeptide chain protons, as observed in the NOESY spectrum. The principal secondary structures (alpha helix, beta sheets, etc.) are then identified by their specific connectivities. The tertiary structure is detected by NOESY connectivities between protons of different amino acids which are far apart in the primary sequence. The distance constraints from the NOESY connectivities also provide the starting point for modeling the tertiary structure. This is then refined using distance geometry and molecular dynamics algorithms. The resolution of the structures obtained with the help of recent algorithmic developments may be comparable to that provided by X-ray diffraction. The COSY measurement can be completed or substituted by other measurements, useful albeit more complex. For example, the HOHAHA experiment, currently in wide use, gives the correlations through multiple covalent bonds. Multiquanta experiments, which select systems of a given number of coupled spins, provide spectral simplification.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
M Czakó  L Márton 《Phytochemistry》2001,57(6):1013-1022
In an extensive survey of the genera Baphia, Caesalpinia, Dalbergia, Haematoxylon, and Pterocarpus, we have identified a number of species whose cell cultures accumulated pigments similar to those in heartwood. Thirteen rosewood (Dalbergia) species produced a purple quinonemethide pigment in the callus that was apparently identical between the species. The pigment was first purified from D. retusa cell culture and its structure was elucidated by mass, infrared, and detailed 1H and 13C NMR and NOE spectroscopic studies including 2D experiments (COSY, NOESY, HMQC, and HMBC). Retusapurpurin A (1a) is a C(30) isoflavan of novel skeleton whose formation can be rationalized to occur via regioselective oxidative coupling of an isoflavan to 4,4'-dihydroxy-2'-methoxychalcone. Retusapurpurin A was also isolated from D. parviflora heartwood and cell culture indicating that stress metabolism pathways that are shared with heartwood-type secondary metabolism subpathways are initiated in Dalbergia cell cultures. Therefore, Dalbergia cell cultures afford a good model system for studying heartwood-type metabolic differentiation.  相似文献   

12.
Magnetopneumography (MPG) as a non‐invasive method for pneumoconiosis diagnosis has been developed to evaluate the load and spatial distribution of particles within the human lungs through scanning of remanent magnetic fields after magnetization of the subject in a strong direct current field. The measurement of particle spatial distribution is very important for pneumoconiosis diagnosis because localized deposits may be associated with some pathological changes such as pulmonary fibrosis. Previous research found that loads of magnetite particles were proportional to their magnetic dipole moments. The three‐dimensional (3D) MPG magnetic dipole model (MDM) proposed in this paper and based on Biot–Savart Law and matrix manipulation provides a means of precise measurement of the particle distribution and load amount. A styrofoam + magnetite powder phantom with magnetization was laid on a nonmagnetic board. Two first‐order fluxgate gradiometers with 10–12 T sensitivity were coaxially applied over and under the phantom and used for scanning remanent magnetic fields. This paper provides validation results using 3D MPG MDM through two experiments. The overall error of the simulation results is 0.2–2.7% in the center and 7.28–9.42% in the corners of the subject. Finally, this paper gives clinical experiments with a welder suffering stage‐II pneumoconiosis and states that the 3D MPG MDM shows similar results to X‐ray chest films in pneumoconiosis diagnosis. The results suggest that the 3D MPG MDM is potentially a reasonable and accurate algorithmic model to inversely track the load amount and distribution of magnetite particles within the lungs. Bioelectromagnetics. 2019;40:472–487. © 2019 Wiley Periodicals, Inc  相似文献   

13.
A method that combines NMR spectral and structural information into a constructed three-dimensional (3D)-connectivity matrix is developed for modeling biological binding activity of small molecules. The 3D-connectivity matrix for a molecule is defined by associating the distances between all possible carbon-to-carbon connections with their assigned carbon NMR chemical shifts. In this project we selected from the total 3D-connectivity matrix a subset, the two-dimensional (2D) (13)C-(13)C COSY and a theoretical long range 2D (13)C-(13)C distance connectivity spectral plane. Patterns of (13)C chemical shifts observed at these two relative distances for 50 steroids were used to produce a mathematical relationship for the steroids' relative binding affinity (pK(i)) to the aromatase enzyme. We call this technique comparative structural connectivity spectra analysis (CoSCoSA) modeling. Using combinations of the 2D COSY and 2D long-range distance spectra as modeling parameters, we built four CoSCoSA models. One model was made from the 2D COSY spectra alone and another was developed using only the 2D long-range distance spectra. Then the COSY and long-distance spectra were combined in two different ways: starting with the combined principal components (PCs) from the separately calculated COSY and distance spectra or using the combined raw spectra (3D). The best CoSCoSA model was based on the combined PCs from COSY and distance spectra. This model had an r(2) of 0.96 and a leave-one-out cross-validation (q(2)) of 0.92. In general CoSCoSA modeling combines the quantum mechanical information inherent in NMR chemical shifts with internal molecular atom-to-atom distances to give a reliable and straightforward basis for predictive modeling. The technique has the flexibility and accuracy to outperform not only the cross-validated variance q(2) of previously published quantitative structure-activity relationships (QSAR) but also those obtained by related quantitative spectral data-activity relationships (QSDARs) lacking connectivity dimensions.  相似文献   

14.
2D [(13)C,(1)H] COSY NMR is used by the metabolic engineering community for determining (13)C-(13)C connectivities in intracellular compounds that contain information regarding the steady-state fluxes in cellular metabolism. This paper proposes innovations in the generation and analysis of these specific NMR spectra. These include a computer tool that allows accurate determination of the relative peak areas and their complete covariance matrices even in very complex spectra. Additionally, a method is introduced for correcting the results for isotopic non-steady-state conditions. The proposed methods were applied to measured 2D [(13)C,(1)H] COSY NMR spectra. Peak intensities in a one-dimensional section of the spectrum are frequently not representative for relative peak volumes in the two-dimensional spectrum. It is shown that for some spectra a significant amount of additional information can be gained from long-range (13)C-(13)C scalar couplings in 2D [(13)C,(1)H] COSY NMR spectra. Finally, the NMR resolution enhancement by dissolving amino acid derivatives in a nonpolar solvent is demonstrated.  相似文献   

15.
Digeneaside (alpha-D-mannopyranosyl-(1-->2)-D-glycerate) was extracted from the red algae, Bostrychia binderii, and purified by adsorption and gel-filtration chromatography. HPLC and ESI-MS techniques were used to follow purification steps and characterize digeneaside. NMR spectroscopy experiments (1D 1H, 13C, DEPT and 2D HMQC, COSY and TOCSY) were used to fully assign the 1H and 13C spectra.  相似文献   

16.
Double-quantum filtered COSY and triple-quantum filtered COSY techniques have been compared for the tripeptide Gly-Tyr-Gly and for human lysozyme. The insertion of a triple-quantum filter in the COSY experiment leads to dramatic spectral simplification in the fingerprint region of the spectrum and permits the specific identification of glycine spin systems in the complex 1H NMR spectra of proteins. The assignment of these peaks to glycine H alpha can be confirmed using 2D double-quantum correlated spectroscopy.  相似文献   

17.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

18.
Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed (1)H-(13)C peak patterns that are distinctive for different functional groups plus (1)H-(1)H COSY connectivities that serve to identify adjacent groups. The COSY diagonal peaks, which are phased to be absorptive, resemble (1)H-(13)C HMQC cross peaks. We demonstrate the applicability of this experiment for rapidly and unambiguously establishing correlations between different functional groups through the analysis of the spectrum of a metabolite (jasmonic acid) dissolved in CDCl(3). In addition, we show that the experiment can be used to assign spectra of compounds in a mixture of metabolites in D(2)O.  相似文献   

19.
The structural requirements for the binding of dynorphin to the kappa-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10- Lys11-Leu12-Lys13. Schwyzer has proposed an essentially alpha-helical membrane-mediated conformation of the 13 amino acid peptide [Schwyzer, R. (1986) Biochemistry 25, 4281-4286]. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz 1H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg7 to Arg9 was in an extended or beta-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants 3JHN alpha. The results clearly demonstrated the absence of extensive alpha-helix formation. chi 1 rotamer analysis of the 3J alpha beta demonstrated no preferred side-chain conformations.  相似文献   

20.
In a chemotaxonomic approach the investigation of a methanolic extract of bulbs of Urginea fugax (MORIS) STEINH. resulted in the detection of several cardenolides. The structure of a novel compound, named fugaxin (1), was established as 12alpha,14beta-dihydroxy-2alpha,3beta-(tetrahydro-3',5'-dihydroxy-4'-methoxy-6'-methyl-2H-pyran-2',4'-diylbisoxy)-card-4,20-dienolide by extensive NMR spectroscopic studies including 2D-NMR techniques (COSY, HSQC, HMQC) and selective 1D experiments (NOE, TOCSY) as well as HR-ESI-MS. The chemotaxonomic relevance of the occurrence of cardenolides in the genus Urginea is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号