首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochemical investigation of the Et2O extract of liverwort Apomarsupella revolute led to isolation and identification of five new eudesmane-type sesquiterpenoids, 6β-hydroxy-9β-acetoxy-eudesma-4,11-dien (1), 6β-hydroxy-9β-acetoxy-eudesma-4,11-dien-3-one (2), 5α,6β-dihydroxy-9β-acetoxy-eudesma-4(15),11-dien (3) 4β-hydroxy-9β-acetoxy-11,12,13-trinor-5-eudesmen-7-one (4) and 4β-methox-9β-acetoxy-11,12,13-trinor-5-eudesmen-7-one (5), two of which were trinorsesquiterpenoids. Their structures were established unequivocally on the basis of spectroscopic data analysis. All compounds were preliminary bioscreened for their cytotoxicities and antifungal activities.  相似文献   

2.
The biotransformation of sesquiterpenoids having an α,β-unsaturated carbonyl group, such as α-santonin (1), lancerodiol p-hydroxybenzoate (2), 8,9-dehydronootkatone (3), and nootkatone (4), with cultured suspension cells of Marchantia polymorpha was investigated. It was found that the CC double bond of 1 and 2 was hydrogenated to give 1,2-dihydro-α-santonin (5) and 3,4-dihydrolancerodiol p-hydroxybenzoate (6), respectively, while the allylic position of the CC double bond of 3 and 4 was hydroxylated to give 13-hydroxy-8,9-dehydronootkatone (7) and 9-hydroxynootkatone (8), respectively.  相似文献   

3.
Mucor genevensis were used to bioconvert sinenxan A [2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene], a taxoid isolated from callus tissue cultures of Taxus spp., and 10 metabolites were obtained. On the basis of chemical and spectroscopic data analyses, their structures were determined as 10β-methoxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (2), 10β-hydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (3), 2α,5α,10β,14β-tetraacetoxy-4β,20-epoxy-taxa-11(12)-ene (4), 6α-hydroxy-2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene (5), 9α-hydroxy-2α,5α,10β,14β-tetraacetoxy-taxa-4(20),11-diene (6), 10β-hydroxy-2α,5α,14β-triacetoxy-4β,20-epoxy-taxa-11(12)-ene (7), 6α,10β-dihydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (8), 6α-hydroxy-2α,5α,10β,14β-tetraacetoxy-4β,20-epoxy-taxa-11(12)-ene (9), and 9α,10β-dihydroxy-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (10), and 9α,10β-O-(propane-2,2-diyl)-2α,5α,14β-triacetoxy-taxa-4(20),11-diene (11). Among them, metabolites 2, 4, and 9 were three new compounds. The three major metabolites 2, 3, and 4 along with 1 were pharmacologically evaluated for their multi-drug resistance (MDR) reversal activities towards taxol-resistant A549 tumor cells, and the results showed that 4 possessed about two-fold activity as verapamil, while 2, and 3 possessed lower activity than verapamil and 1.  相似文献   

4.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

5.
Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines.  相似文献   

6.
Liquid chromatography with thermospray mass spectrometry has proved to be an invaluable technique for the study of metabolic degradation of xenobiotics in complex biological fluids. This paper describes the detection of 4-hydroxyandrost-4-ene-3,17-dione and its metabolites in urinary extracts from prostatic cancer patients. Several metabolites were detected including 4β,5α-dihydroxyandrostan-3,17-dione, 3,17-dihydroxyandrostan-4-ones and 3α-hydroxy-5β-androstan-4,17-dione.  相似文献   

7.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

8.
A series of steroids (progesterone, testosterone acetate, 17β-acetoxy-5α-androstan-3-one, testosterone and androst-4-en-3,17-dione) have been incubated with the thermophilic ascomycete Myceliophthora thermophila CBS 117.65. A wide range of biocatalytic activity was observed with modification at all four rings of the steroid nucleus and the C-17β side-chain.This is the first thermophilic fungus to demonstrate the side-chain cleavage of progesterone. A unique fungal transformation was observed following incubation of the saturated steroid 17β-acetoxy-5α-androstan-3-one resulting in 4-hydroxy-3,4-seco-pregn-20-one-3-oic acid which was the product generated following the opening of an A-homo steroid, presumably by lactonohydrolase activity. Hydroxylation predominated at axial protons of the steroids containing 3-one-4-ene ring-functionality. This organism also demonstrated reversible acetylation and oxidation of the 17β-alcohol of testosterone.All steroidal metabolites were isolated by column chromatography and were identified by 1H, 13C NMR, DEPT analysis and other spectroscopic data. The range of steroidal modification achieved with this fungus indicates that these organisms may be a rich source of novel steroid biocatalysis which deserve greater investigation in the future.  相似文献   

9.
1. Four substances from the urine of a hypertensive newborn girl were partially characterized and shown to be 17α-hydroxy-5β-pregnane-1,3,20-trione, 3α,17α-dihydroxy-5β-pregnane-1,20-dione, 3α,17α,20α-trihydroxy-5β-pregnan-1-one and 5β-pregnane-1β,3α,17α,20α-tetrol. 2. The characterization rested mainly on RM analysis of the substances and their derivatives by glycol fission, providing evidence for position and degree of substitution and for steroidal character. Supporting evidence was provided by chemically specific location reactions. 3. Certain problems in the manipulation of these β-disubstituted steroids are discussed.  相似文献   

10.
Di-nor-benzofuran neolignan aldehydes, Δ7-3,4-methylenedioxy-3′-methoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal A) 1, Δ7-3,4,5,3′-tetramethoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal B) 2, and macrophyllin-type bicyclo[3.2.1]octanoid neolignans (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-5′-methoxy-3,4-methylenedioxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol A) 3, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5′-trimethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol B) 4, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5,5′-tetramethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol C) 5, as well as 2′-epi-guianin 6 and (+)-licarin B 7, were isolated and characterized from leaves of Ocotea macrophylla (Lauraceae). The structures and configuration of these compounds were determined by extensive spectroscopic analyses. Inhibition of platelet activating factor (PAF)-induced aggregation of rabbit platelets were tested with neolignans 1–7. Although compound 6 was the most potent PAF-antagonist, compounds 3–5 showed some activity.  相似文献   

11.
Guan H  You S  Yang L  Wang X  Ni R 《Biotechnology letters》2005,27(16):1189-1193
A new isolate of Aspergillus sp. hydrogenated the γ,δ-double bond of securinine (143 mg l−1) to give 14,15-dihydrosecurinine at over 98% (w/w) yield after 8 h. It also hydrogenated the C11(13) double bond of 3-hydroxy-1(10),3,11(13)-guaiatriene-12,6-olide-2-one (HGT) (200 mg l−1) to give 3-hydroxy-1(10),3-guaiadiene-12,6-olide-2-one with over 98% (w/w) conversion after 24 h.  相似文献   

12.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

13.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

14.
Investigation of the twigs of Dorstenia mannii gave 6,8-diprenyl-5,7,3′4′-tetrahydroxyflavanone and four new prenylated flavanones, named dorsmanins E-H and characterized as 5,6-7,8-bis-(2,2-dimethylchromano)-3′,4′-dihydroxyflavanone, 7,8-[2″-(1-hydroxy-1-methylethyl)-dihydrofurano]-6-prenyl-5,3′,4′-trihydroxyflavanone, 6,7-[2″-(1-hydroxy-1-methylethyl)dihydrofurano]-8-prenyl-5,3′,4′-trihydroxyflavanone and 6-prenyl-8-(2-hydroxy-3-methylbut-3-enyl)-5,7,3′,4′-tetrahydroxyflavanone, respectively, on the basis of spectral analysis and chemical evidence for the chromano derivative.  相似文献   

15.
Four trinorsesquiterpenoids (14) were isolated from the roots of Inula racemosa and the structures of two new compounds, (4R,5S,10S)-5-hydroxy-11,12,13-trinoreudesm-6-en-8-one (1) and (4R,5R,10R)-4,15-epoxy-11,12,13-trinoreudesman-8-one (3), were elucidated by extensive spectroscopic analysis. Furthermore, the structure of compound 2a should be revised as (4R,5R,10S)-5-hydroxy-11,12,13-trinoreudesm-6-en-8-one (2) and compound 2 showed antiproliferative activity against A549, HepG2, and HT1080 cell lines with IC50 values of 3.71, 5.94, and 3.95 μg/mL, respectively.  相似文献   

16.
New analogues of 3β-hydroxy-5α-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3β-hydroxy-24-methyl-22,23-oxido-5α -cholest-8(14)-en-15- ones and (22RS,23ξ,24S)-24-methyl-5α-cholesta-8(14)-ene-3β, 22,23-triol-15-one] were synthesized from (22E,24S)-3β-acetoxy-24-methyl-5α-cholesta-8(14), 22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9±0.2 and 0.7±0.2 μM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0±0.5 μM), (22E,24S)-3β-hydroxy-24-methyl-5α-cholesta-8(14),22- dien-15-one (IC50 3.1±0.4 μM), and the 3β,22,23-triol synthesized (IC50 6.0±1.0 μM).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 312–319.Original Russian Text Copyright © 2005 by Flegentov, Piir, Medvedeva, Tkachev, Timofeev, Misharin.  相似文献   

17.
A series of naphthoquinones based on the naphtho[2,3-b]furan-4,9-dione skeleton such as (−)-5-hydroxy-2-(1′-hydoxyethyl)naphtho[2,3-b]furan-4,9-dione (1) and its positional isomer, (−)-8-hydroxy-2-(1′-hydoxyethyl)naphtho[2,3-b]furan-4,9-dione (2), which are secondary metabolites found in the inner bark of Tabebuia avellanedae, were stereoselectively synthesized and their biological activities were evaluated in conjunction with those of their corresponding enantiomers. Compound 1 exhibited potent antiproliferative effect against several human tumor cell lines, but its effect against some human normal cell lines was much lower than that of mitomycin. On the other hand, its enantiomer (R)-1 was less active toward the above tumor cell lines than 1. The antiproliferative effect of 2 against all tumor cell lines was significantly reduced. These results indicated the presence of the phenolic hydroxy group at C-5 is of great important for increasing antiproliferative effect. In addition, 1 also showed higher cancer chemopreventive activity than 2, while there were no significant differences between 1 and 2 in antimicrobial activity. Both compounds displayed modest antifungal and antibacterial activity (Gram-positive bacteria), whereas they were inactive against Gram-negative bacteria.  相似文献   

18.
In order to study the role of N-terminal substitutions of peptide sequences related to the active site of α-melanotropin, [Glp5]α-MSH(5–10), [Glp5, -Phe7]α-MSH(5–10), [Sar5, -Phe7]α-MSH(5–10), [Nle4, -Phe7]α-MSH(4–10), [N-carbamoyl]α-MSH(5–10), and formyl and acetyl derivatives of α-MSH(5–10), [Gly5]α-MSH(5–10) and [Gly5, -Phe7]α-MSH(5–10), were synthesized in solution. The N-terminal acylations enhance by 2 to 10 times the melanin-dispersing activity of the unsubstituted sequences. Alkylation of the N-terminus does not change the biological activity of the parent peptide, suggesting the necessity of a carbonyl group for increasing the hormonal effect.  相似文献   

19.
A capillary gas chromatographic–mass spectrometric method for the simultaneous determination of 6β-hydroxycortisol (6β-OHF, 6β,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione), 6α-hydroxycortisol (6α-OHF, 6α,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione) and 6β-hydroxycortisone (6β-OHE, 6β,17α,21-trihydroxypregn-4-ene-3,11,20-trione) in human urine is described. Deuterium-labelled compounds, 6β-[1,1,19,19,19-2H5]OHF (6β-OHF-d5), 6α-[1,1,19,19,19-2H5]OHF (6α-OHF-d5) and 6β-[1,1,19,19,19-2H5]OHE (6β-OHE-d5) were used as internal standards. Quantitation was carried out by selected-ion monitoring of the characteristic fragment ions ([M-31]+) of the methoxime–trimethylsilyl (MO–TMS) derivatives of 6β-OHF, 6α-OHF and 6β-OHE. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring 6β-OHF, 6α-OHF and 6β-OHE in human urine.  相似文献   

20.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (Curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1,7-bis(3,4-dihydroxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (3), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1,7-bis (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (5), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (6), 1,7-bis(3,4-dimethoxyphenyl)-1,6- heptadiene-3,5-dione (7), 1,7-bis(4-methoxyphenyl)-1,6-heptadiene-3,5-dione (8), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (9). Antioxidative effects of curcumin and its analogues against free radical initiated peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu2+). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol present in the native LDL, or by the formation of thiobarbituric acid reactive substances. Kinetic analysis of the antioxidation process demonstrates that these compounds, except 7, 8, and 9, are effective antioxidants against AAPH- and Cu2+ -initiated LDL peroxidation by H-atom abstraction from the phenolic groups. Compounds 2 and 3 which bear ortho-diphenoxyl functionality possess significantly higher antioxidant activity than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号