首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Anopheles dirus glutathione S-transferase (GST) has been obtained and named adGST4-1. Both genomic DNA and cDNA for heterologous expression were acquired. The genomic sequence was 3188bp and consisted of the GST gene as well as flanking sequence. The flanking sequence was analyzed for possible regulatory elements that would control gene expression. In Drosophila several of these elements have been shown to be involved in development and cell differentiation. The deduced amino acid sequence has low identity compared with the four alternatively spliced enzymes, adGST1-1 to 1-4, from another An. dirus GST gene adgst1AS1. The percent identities are 30--40% and 11--12% comparing adGST4-1 to insect GSTs from Delta and Sigma classes, respectively. Enzyme characterization of adGST4-1 shows it to be distinct from the other An. dirus GSTs because of low enzyme activity for customary GST substrates including 1-chloro-2, 4-dinitrobenzene (CDNB). However, this enzyme has a greater affinity of interaction with pyrethroids compared to the other An. dirus GSTs.  相似文献   

2.
An isoenzyme of glutathione S-transferase (adGST) was purified from liver intestine of the seashell (Asaphis dichotoma) by GST-Sepharose 4B affinity chromatography followed by reverse-phase HPLC. The enzyme has a pI value of 4.6 and is composed of two subunits each with a molecular weight of 23kDa. It exhibits different catalytic activities toward the substrates 1-chloro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, ethacrynic acid, and p-nitrophenyl acetate and, fascinatingly, shows high activity toward CDNB. The amino acid composition of adGST was determined and found to be very similar to the Sloane squid GSTs. N-terminal analysis of the first 15 residues of adGST revealed that it has 73% sequence identity with the pig roundworm GSTs. The adGST shows characteristics similar to those of class sigma GSTs, as was indicated by its substrate specificity, N-terminal amino acid sequence, and amino acid composition.  相似文献   

3.
Previously we have purified and characterized a major glutathione S-transferase (GST) activity, GST-4a, from the Thai mosquito Anopheles dirus B, a model mosquito for study of anopheline malaria vectors [Prapanthadara, L. Koottathep, S., Promtet, N., Hemingway, J. and Ketterman, A.J. (1996) Insect Biochem. Mol. Biol. 26:3, 277-285]. In this report we have purified an isoenzyme, GST-4c, which has the greatest DDT-dehydrochlorinase activity. Three additional isoenzymes, GST-4b, GST-5 and GST-6, were also partially purified and characterized for comparison. All of the Anopheles GST isoenzymes preferred 1-chloro-2,4-dinitrobenzene (CDNB) as an electrophilic substrate. In kinetic studies with CDNB as an electrophilic substrate, the V(max) of GST-4c was 24.38 micromole/min/mg which was seven-fold less than GST-4a. The two isoenzymes also possessed different K(m)s for CDNB and glutathione. Despite being only partially pure GST-4b had nearly a four-fold greater V(max) for CDNB than GST-4c. In contrast, GST-4c possessed the greatest DDT-dehydrochlorinase specific activity among the purified insect GST isoenzymes and no activity was detected for GST-5. Seven putative GST substrates used in this study were not utilized by An. dirus GSTs, although they were capable of inhibiting CDNB conjugating activity to different extents for the different isoenzymes. Bromosulfophthalein and ethacrynic acid were the most potent inhibitors. The inhibition studies demonstrate different degrees of interaction of the An. dirus isoenzymes with various insecticides. The GSTs were inhibited more readily by organochlorines and pyrethroids than by the phosphorothioates and carbamate. In a comparison between An. dirus and previous data from An. gambiae the two anopheline species possess a similar pattern of GST isoenzymes although the individual enzymes differ significantly at the functional level. The available data suggests there may be a minimum of three GST classes in anopheline insects.  相似文献   

4.
Two distinct cDNAs corresponding to GSTA1 and GSTA2 genes encoding glutathione S-transferases (GSTs) from the hepatopancreas of red sea bream, Pagrus major were cloned and sequenced. A comparison of the nucleotide sequences of GSTA1 and GSTA2 revealed 98% identity and their derived amino acid sequences had 96% similarity. Both genes could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. Genomic DNA cloning showed that both GSTA1 and GSTA2 genes consisted of six exons and five introns. In a comparison of genomic DNAs, the structures of GSTA1 and GSTA2 differed. In addition, Southern-blot analysis indicated that at least two kinds of alpha-class GSTs existed in the P. major genome. In order to biochemically characterize the recombinant enzymes (pmGSTA1-1 and pmGSTA2-2), both clones were highly expressed in Escherichia coli. The purified pmGSTA1-1 and pmGSTA2-2 exhibited glutathione conjugating activity toward 1-chloro-2,4-dinitrobenzene and glutathione peroxidase activity toward cumene hydroperoxide, while neither pmGSTs show detectable activity toward 1,2-dichloro-4-nitrobenzene, ethacrynic acid, 4-hydroxynonenal, or p-nitrobenzyl chloride. Despite their high level of amino acid sequence identity, the pmGSTs had quite different enzyme-kinetic parameters.  相似文献   

5.
Recombinant glutathione S-transferase (agGST1-6) from the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) was expressed in Escherichia coli using a pET3a vector system. The expressed enzyme was biochemically active with reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Activity of agGST1-6 with GSH and CDNB was inhibited to different degrees by both alpha-cyano and non-alpha-cyano pyrethroid insecticides. This inhibition was used to develop an assay for quantification of pyrethroids. Standard curves of insecticide concentration against percentage of enzyme inhibition or volume of iodine solution were established by spectrophotometry and iodine volumetric titration, respectively, for permethrin and deltamethrin. These assays allowed estimation of pyrethroid concentrations both spectrophotometrically and visually. For the residue assay of each insecticide, a cut-off point of 50% of the initial pyrethroid impregnation concentration was used, which should differentiate between biologically active and inactive treated bednets. The cross-reactivity of the primary permethrin photodegradants (3-phenoxyalcohol and 3-phenoxybenzoic acid) with the recombinant agGST1-6 was assayed in the same system. No agGST1-6 inhibition by the insecticide metabolites was observed, suggesting that the system is unaffected by primary permethrin metabolites and will accurately measure insecticide parent compound concentrations. The estimated pyrethroid insecticide concentrations, given spectrophotometrically and by iodine titration assay, were comparable to those obtained by direct HPLC quantification of residues extracted from bednets. Hence, it should be relatively easy to adapt this method to produce a test kit for residue quantification in the field.  相似文献   

6.
Glutathione S-transferases (GSTs: E.C. 2.5.1.18) are a multigene family of multifunctional dimeric proteins that play a central role in detoxication. Four allelic forms of the mosquito Anopheles dirus GST, adGST1-1, were cloned, expressed and characterized. The one or two amino acid changes in each allelic form was shown to confer different kinetic properties. Based on an available crystal structure, several of the residue changes were not in the putative substrate-binding pocket. Modeling showed that these insect Delta class GSTs also possess a hydrophobic surface pocket reported for Alpha, Mu and Pi class GSTs. The atom movement after replacement and minimization showed an average atom movement of about 0.1 A for the 0 to 25 A distance from the alpha carbon of the single replaced residue. This does not appear to be a significant movement in a static modeled protein structure. However, 200-500 atoms were involved with movements greater than 0.2 A. Dynamics simulations were performed to study the effects this phenomenon would exert on the accessible conformations. The data show that residues affecting nearby responsive regions of tertiary structure can modulate enzyme specificities, possibly through regulating attainable configurations of the protein.  相似文献   

7.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

8.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

9.
研究了人胎盘型谷胱甘肽S-转移酶(GST-π)的动力学。底物GSH和1-氯-2,4-二硝基苯(CDNB)的km分别为0.109和0.870mmol/L。苯唑青霉素和先锋霉素Ⅰ能抑制GST—π,以先锋霉素较明显,属非竞争性抑制。溴磺酜对CDNB也是非竞争作用,但胆红素则对CDNB竞争而对GSH非竞争地抑制酶活力。S-正辛烷和S-正已烷谷胱甘肽与GSH竞争而与CDNB非竞争地抑制GST-π。已充分证明GST-π所催化的双底物反应属随机顺序机制。化学修饰实验发现:巯基、胍基、氨基、羧基和吲哚基可能参与酶活性中心的组成。  相似文献   

10.
Glutathione S-transferases (GSTs) are a group of detoxification enzymes that catalyze the nucleophilic addition of glutathione to a wide variety of endogenous and xenobiotic compounds. In this study, GSTs were purified from four field populations of Bactrocera dorsalis with different insecticide susceptibilities by glutathione-agarose affinity chromatography. The populations were collected from Dongguan (DG) and Guangzhou (GZ) of the Guangdong Province, Haikou of the Hainan province (HN), and Kunming of the Yunnan province (YN), China. Differences in GST characteristics among the four populations were studied using purified enzyme samples through comparative SDS-PAGE, kinetic, and inhibition experiments. The specific activities of the purified enzymes were similar, but the purification yield of the GZ population (31.54%) was the lowest. SDS-PAGE analysis showed only one band at approximately 23 kDa for these four populations. Kinetic analyses showed that the affinities of the purified GSTs from the GZ and YN populations for 1-chloro-2.4-dinitrobenzene (CDNB) were much higher than those of GSTs from the other two populations, whereas the HN population had the highest catalytic capability in terms of V(max) value. The optimum temperature for CDNB conjugation was 37 °C and the optimum pH was 7.5 in all four populations. Inhibition kinetics showed that ethacrynic acid, diethyl maleate, tetraethylthiuram disulfide, curcumin, bromosulfalein, and β-cypermethrin had excellent inhibitory effects on GSTs in the four populations of B. dorsalis, but the low inhibitory effects of malathion and avermectin did not differ between populations. These results suggest that GSTs may have a role in detoxification of β-cypermethrin in B. dorsalis.  相似文献   

11.
Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.  相似文献   

12.
Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8 kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA). However, none of the GSTM proteins had AFBO detoxification capability, in contrast to recombinant alpha-class GSTs shown in our recent study to possess this important activity. In total, our data indicate that although turkey hepatic GSTMs may contribute to xenobiotic detoxification, they probably play no role in detoxification of AFBO in the liver.  相似文献   

13.
Substrate binding and the subsequent reaction are the two principal phenomena that underlie the activity of enzymes, and many enzyme-like catalysts were generated based on the phenomena. The single chain variable region fragment of antibody 2F3 (scFv2F3) was elicited against hapten GSH-S-DN2phBu, a conjugate of glutathione (GSH), butyl alcohol, and 1-chloro-2,4-dinitrobenzene (CDNB); it can therefore bind both GSH and CDNB, the substrates of native glutathione S-transferases (GSTs). It was shown previously that there is a serine residue that is the catalytic group of GST in the CDR regions of scFv2F3 close to the sulfhydryl of GSH. Thus, we anticipated that scFv2F3 will display GST activity. The experimental results showed that scFv2F3 indeed displayed GST activity that is equivalent to the rat-class GST T-2-2 and exhibited pH- and temperature-dependent catalytic activity. Steady-state kinetic studies showed that the Km values for the substrates are close to those of native GSTs, indicating that scFv2F3 has strong affinities for the substrates. Compared with some other GSTs, its kcat value was found to be low, which could be caused by the similarity between the GSH-S-DN2phBu and the reaction product of GSH and CDNB. These results showed that our approach to imitating enzymes is correct, which is that an active site may catalyze a chemical reaction when a catalytic group locates beside a substrate-binding site of a receptor. It is important to consider product inhibition in hapten design in order to obtain a mimic with a high catalytic efficiency.  相似文献   

14.
The activities of rat glutathione transferases (GSTs) 3-3, 3-4, 4-4 in Class mu towards 1-chloro-2,4-dinitrobenzene (CDNB) but not 1,2-dichloro-4-nitrobenzene were increased up to 5-fold during preincubation with 0.4 mM xanthine and xanthine oxidase in 50 mM potassium phosphate, pH 7.8, containing 0.1 mM EDTA. The activated GST 3-4, purified by S-hexylglutathione affinity chromatography after the treatment, had a higher specific activity (130 units/mg) than that of the nontreated (35 units/mg), the Km and Vmax values for glutathione or CDNB also were increased. Other rat GSTs in Class alpha and pi were inactivated by the same treatment. In the presence of superoxide dismutase, the activation of GST 3-4 did not occur.  相似文献   

15.
A library of alpha class glutathione transferases (GSTs), composed of chimeric enzymes derived from human (A1-1, A2-2 and A3-3), bovine (A1-1) and rat (A2-2 and A3-3) cDNA sequences was constructed by the method of DNA shuffling. The GST variants were screened in bacterial lysates for activity with the immunosuppressive agent azathioprine, a prodrug that is transformed into its active form, 6-mercaptopurine, by reaction with the tripeptide glutathione catalyzed by GSTs. Important structural determinants for activity with azathioprine were recognized by means of primary structure analysis and activities of purified enzymes chosen from the screening. The amino acid sequences could be divided into 23 exchangeable segments on the basis of the primary structures of 45 chosen clones. Segments 2, 20, 21, and 22 were identified as primary determinants of the azathioprine activity representing two of the regions forming the substrate-binding H-site. Segments 21 and 22 are situated in the C-terminal helix characterizing alpha class GSTs, which is instrumental in their catalytic function. The study demonstrates the power of DNA shuffling in identifying segments of primary structure that are important for catalytic activity with a targeted substrate. GSTs in combination with azathioprine have potential as selectable markers for use in gene therapy. Knowledge of activity-determining segments in the structure is valuable in the protein engineering of glutathione transferase for enhanced or suppressed activity.  相似文献   

16.
17.
A cDNA of glutathione S-transferase (GST) was isolated from a cDNA library of salivary glands of Boophilus microplus. The recombinant protein was purified by glutathione affinity chromatography and assayed upon the chromogenic substrate CDNB. The 864 bp cloned fragment was sequenced and showed an open reading frame coding for a protein of 220 amino acids. Expression of the GST gene was tested by RT-PCR in tick tissues and larvae mRNA. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to the mammalian class mu GSTs.  相似文献   

18.
Cytosolic glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitro-benzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-(p-nitrophenoxyl)propane (EPNP), trans-4-phenyl-3-buten-2-one (t-PBO), δ3-androstene-3,17-dione (ASD) and trans-stilbene oxide (t-SO); cytosolic glutathione peroxidase activity toward cumene hydroperoxide (CuOOH); and microsomal GST activity toward CDNB were examined in liver, kidney, brain, and lung of adult male and female Japanese quail. In all cases, the renal specific activity per milligram protein was higher than the hepatic activity and was the highest among the four tissues examined. No consistent sex differences in GST activity were observed. The GSTs were purified from quail liver cytosol by S-hexylglutathione and glutathione affinity chromatography. Total GSTs eluted from the S-hexylglutathione affinity column were further separated by chromatofocusing, and the microheterogeneity of the GST isozymes was shown by high-resolution native isoelectrofocusing (IEF) in polyacrylamide slab gels and by SDS-PAGE. Five subunits were identified: QL1 (30.5 kDa), QL2 (27.2 kDa), QL3a (26.8 kDa), QL3b (26.5 kDa), and QL4 (25.5 kDa). Western blot analysis revealed that QL1 and QL2 reacted with antibodies raised against the rat Mu class GSTs (Yb1 and Yb2), and QL3a and QL3b reacted with those raised against the Alpha class (rat Ya and mouse a). Substrate specific activity of each isoform was determined with CDNB, DCNB, CuOOH, EA, t-PBO, ASD, and t-SO. QL3a and QL3b have high reactivity toward CuOOH, while QL1 and QL2 showed high activity toward t-SO. The N-terminal amino acid sequence of QL2 was identical to that of the chicken Mu class GST subunit CL2. However, no sequence was obtained with QL1 due to possible N-terminal blockage. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号