首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It NO has been shown play to the primary role in several mitochondrial functions. Our aim for this study was to investigate whether exogenous NO (L-arginine) or NO blocker L-NNA modulated the adaptive reactions of rat myocardial tissue respiration on intermittent hypoxic training (IHT). In the control rats an acute hypoxic test (inhalation of 7% O2, 30 min) provoked sharp augmentation of ADP-stimulated tissue respiration with the increase of respiratory coefficient and phosphorylation rate, the decrease of O2 uptake efficacy and switching the energy supply to succinate oxidation pathway. The same hypoxic test but following 14 days of IHT (11% O2, 15-min sessions with 15 min rest intervals, 5 times daily) produced a stimulation of oxidative phosphorylation with primary activation of NAD-dependent pathway, the marked increase of ADP/O ratio. The combination of IHT with L-arginine treatment (600 mg/kg intraperitoneally, daily before IHT sessions) provoked the decrease of tissue oxygen consumption in comparison with untrained animals. L-arginine effects abolished by the NO-synthase blocker L-NNA. Its effects on mitochondrial function deals with succinic acid inhibition utilizatin (increasing level ADP/O) and activation NADH-dependent oxidation. We conclude that the combination of IHT with NO-precursor treatment was capable to increase significantly the tolerance to episodes of acute hypoxia.  相似文献   

2.
We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and ADP/O) and the decrease of lipid peroxidation processes. We concluded about protective effect ofpinacidil on mitochondrial functioning under stress.  相似文献   

3.
The influence of L-arginine (600 mg/kg) and NO-synthase blocator N omega-nitro-L-arginine L-NNA (35 mg/kg) on processes of ADP-stimulated respiration (under using 0.35 mM succinate, 1 mM alpha-ketoglutarate, 2 mM pyruvate, 2 mM glutamate, 2 Mm malate and succinate dehydrohenase blocator--2 mM malonate as substrates of oxidation), lipid peroxidation (concentration of DK and MDA), activities of succinate dehydrohenase and aminotransferases in rats tissues with different resistance to hypoxia under stress conditions have been investigated. It have been shown that the energy metabolism indices (respiration rate and efficiency of phosphorilation ADP/O) are higher in high resistent (HR) animals in the control group. Stress causes the increase of ADP-stimulated respiration in low resistent (LR) under succinate oxidation and decrease of NADPH-dependent utilization, indicative of more effort of energy system in LR animals. Stress conditions are connected with the increase of lipid peroxidation products in blood both in LR and in HR animals, though in hepar their concentration change unimportantly. Injection of L-arginine decreases aerobic component of energy metabolism on the background decreasing aminotransferases ways of oxidation and succinate dehydrohenase activity. L-arginine causes decrease of lipid peroxidation products in LR, in HR the same effect reaches by L-NNA injection. The has been made conclusion about tight correlation between energy metabolism, processes of lipid peroxidation with resistance to hypoxia and functioning of nitric oxide cycle under stress conditions.  相似文献   

4.
The experiment, on Wistar male rats was carried out to investigate influence of endurance training (swimming with load 7.0 +/- 1.3% body weight, 30 min a day, during 4 weeks) and additional intermittent hypoxic training (12% O2 in N2 - 15 min, 21% O2 - 15 min, 5 sessions a day, during the first 2 weeks) on the following parameters: ADF-stimulated mitochondrial respiration, lactate/pyruvate ratio, succinate dehydrogenase activity, and lipid peroxidation in skeletal muscle. The next oxidation substrates were used: 1 mmol/l succinate and 1 mmol/l alpha-ketoglutarate as well as the next inhibitor succinate dehydrogenase 2 mmol/l malonate. It was shown that physical work combined with intermittent hypoxic training led to the increase of mitochondrial respiration effectiveness in muscle energy supply under alpha-ketoglutarate oxidation in comparison with succinate oxidation as well as to the decrease of succinate dehydrogenase activity and lipid peroxidation. The study suggested that these changes may correct mitochondrial dysfunction under intensive muscular work.  相似文献   

5.
Dissociation of oxidative phosphorylation and the lowering of the respiratory control during oxidation of succinate, alpha-ketoglutarate and pyruvate by hepatocyte mitochondria were observed in rats with experimental fecal peritonitis. The initial increase in the oxidation rate of the substrates enumerated is replaced by inhibition, whose degree is maximal as regards alpha-ketoglutarate, being less manifest as regards succinate. In the absence of the manifestations of the total dehydration, the increased water content in liver, skeletal muscle and renal tissues is coupled with relatively high values of the ADP/O and is in a good agreement with the lowering of the respiratory control during alpha-ketoglutarate oxidation.  相似文献   

6.
The effects of kallikrein, thrombin, and plasmin on interaction of acetylcholine and noradrenaline with receptors of the isolated portal vein of guinea-pigs were studied. The functional activity of receptors was studied by the pharmacokinetic method. It was found that kallikrein and thrombin do not disturb the kinetics of agonist interaction with receptors, whereas the magnitude of isometric vascular contractions dramatically decreased after plasmin treatment and becomes disproportionate to the concentration of neurotransmitters. Exposure of the portal vein to kallikrein or thrombin caused different changes in the sensitivity and quantity of active cholino- and adrenoreceptors. These proteolytic enzymes reduced the sensitivity of receptors to noradrenaline and increased it to acetylcholine. Exposure to kallikrein brought about a decrease in the quantity of active cholinoreceptors and a rise in the number of adrenoreceptors. The treatment of the vessels with thrombin resulted in a decrease in the number of active adrenoreceptors. The number of active cholinoreceptors remained unchanged.  相似文献   

7.
The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.  相似文献   

8.
Effects Crebs Cycle of exogenous intermediates sodium succinate (50 mg/kg) and sodium alpha-ketoglutarate (200 mg/kg) on processes of mitochondrial ADP-stimulated respiration (using as substrates of oxidation 0.35 mM succinate, 1 mM alpha-ketoglutarate), production of nitric oxide under NO2-, NO3-, as well as carbamide, putrescyne content and processes of lipid peroxidation in the rats liver under acute hypoxia (7% O2 in N2, 30 min) have been studied. It was shown, that the exogenous sodium alpha-ketoglutarate increases nitric oxide content, aminotransferase activation, inhibition of succinatedehydrogenase simultaneously more than exogenous sodium succinate. It correlates with decreasing of processes lipid peroxidation in liver.  相似文献   

9.
The kinetic parameters of the individual reaction of pig heart alpha-ketoglutarate dehydrogenase complex, succinate thiokinase and the alpha-ketoglutarate dehydrogenase complex-succinate thiokinase coupled system were studied. The KCoAm of alpha-ketoglutarate dehydrogenase complex and the K-succinyl CoAm of succinate thiokinase decreased in the coupled system when compared to those of the individual enzyme reactions. This phenomenon can be explained by the interaction between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase. By means of poly(ethylene glycol) precipitation, ultracentrifugation and gel chromatography we were able to detect a physical interaction between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase. Of the seven investigated proteins only succinate thiokinase showed association with alpha-ketoglutarate dehydrogenase complex. On the other hand, succinate thiokinase did not associate with other high molecular weight mitochondrial enzymes such as pyruvate dehydrogenase complex and glutamate dehydrogenase. On this basis, the interaction between succinate thiokinase and alpha-ketoglutarate dehydrogenase complex was assumed to be specific. These in vitro data raise the possibility that a portion of the citric acid cycle enzymes exists as a large multienzyme complex in the mitochondrial matrix.  相似文献   

10.
Substrate-level phosphorylation was observed under the conditions optimal for this process and opposite to those for oxidative phosphorylation. Polarographic registration of Ca2+ stimulated alpha-ketoglutarate oxidation and self-inhibition of uncoupled alpha-ketoglutarate (KG) oxidation was used. Acetylcholine (ACh) administration stimulated KG oxidation and substrate-level phosphorylation in isolated mitochondria. These effects are stronger in tissues with a higher level of endogenous acetylcholine, such as guinea pig liver vs rat liver and pancreas vs liver. The specific stimulation of KG oxidation by ACh is related to a decrease of succinate oxidation and is contrary to the specific stimulating effect of adrenaline on succinate oxidation. Therefore the existence of reciprocal hormone-substrate-nucleotide systems is suggested. The described set of conditions optimal for substrate-level phosphorylation observation by polarographic registration of respiration is as convenient as the ADP test for the investigation of oxidative phosphorylation.  相似文献   

11.
1. The interrelationship between progesterone (from cholesterol) biosynthesis and oxidative phosphorylation in human placental mitochondria was examined. 2. ADP and ATP stimulated the malate, succinate and alpha-ketoglutarate-supported progesterone biosynthesis probably via the energy-dependent pyridine nucleotide transhydrogenase activation. The effect of ADP was abolished by rotenone and antimycin in the presence of malate or alpha-ketoglutarate. 3. In the non-energized state of mitochondria malate may supported progesterone biosynthesis by the malic enzyme-dependent pathway. 4. The inhibitory effects of antimycin or cyanide, and the stimulatory effect of rotenone on the succinate-supported progesterone biosynthesis indicate that the succinate to malate conversion is a necessary condition for the stimulation of progesterone biosynthesis from cholesterol. 5. alpha-Ketoglutarate plus malonate did support progesterone biosynthesis also in the presence of ADP or ATP and to a lesser degree in the presence of DNP and rotenone. Arsenate in the presence of alpha-ketoglutarate, malonate, dinitrophenol and rotenone did not affect significantly progesterone biosynthesis. These results indicate that NADPH may be generated also by a non-energy-dependent transhydrogenation in placental mitochondria.  相似文献   

12.
The effect of calf blood extract (Solcoseryl, SS) on mitochondrial oxidative function in various states was studied polarographically in vitro. 1) Mitochondrial respiration in all 4 conventional study states (Estabrook, 1967) was enhanced by the addition of SS, including states 1 and 2 (endogenous substrates only). 2) The effect of SS on mitochondrial oxygen consumption was concentration dependent, while ADP/O ratio remained constant. The effect of added respiratory substrates varied with the particular substrate at optimally active concentrations. With suboptimal substrate levels, ADP/O ratios were concentration dependent, in contrast to the SS effect. Under oligomycin ATPase inhibition, SS was no longer active, in contrast to DNP, which remained active. 3) In states 3 (added ADP) and 4 (ADP exhausted), oxygen consumption and oxidative phosphorylation were enhanced by SS in the presence or absence of citrate, glutamate, pyruvate, lactate, or ascorbate. However, in the presence of succinate, SS had no effect. 4) ADP/O ratio was decreased by SS in the presence of added substrate, suggesting that SS activation of H(+)-ATPase enhances ATP hydrolysis as well as oxidative phosphorylation and ATP synthesis. 5) The enhancing effect of SS on mitochondrial function is due to hydrophilic components of SS. The lipidic components obtained by Folch fraction of SS have no effect. It is concluded that the effects of SS respiratory substrates and uncouplers on mitochondrial function are essentially different. SS enhances both ATP synthesis and oxygen consumption by mitochondria.  相似文献   

13.
P F Cook 《Biochemistry》1982,21(1):113-116
A combination of kinetic and isotope effect studies in the presence and absence of the effectors ADP and GTP was used to elucidate the mechanism of regulation of bovine liver glutamate dehydrogenase. ADP at low concentrations of glutamate competes with TPN for free enzyme. GTP exhibits a similar effect at high concentrations (100 microM and above). When ADP binds at its allosteric site, it increases the off rates of both alpha-ketoglutarate and TPNH from their product complexes. This results in a decrease in V/K for both substrates, an increase in V, and an increase in the deuterium isotope effects for all three parameters so that they are all about 1.3. The rate of release of glutamate from E-TPNH-glutamate is also apparently enhanced since no substrate inhibition by glutamate is observed in the presence of ADP. The effect of GTP is in opposition to that of ADP in that GTP decreases the off rates for both TPN and glutamate from E-TPN-glutamate as well as the off rates for alpha-ketoglutarate and TPNH. This results in an increase in the V/K's for both substrates, a decrease in V, and a decrease in the deuterium isotope effects for all three parameters to a value of 1. Substrate inhibition by glutamate is also eliminated by GTP probably by preventing any significant accumulation of E-TPNH to which glutamate binds as an inhibitor.  相似文献   

14.
Cellular intoxication by elevated concentrations of O2 may be considered as a model for accelerated cellular aging processes resulting from excessive free radical production by normal metabolic pathways. We describe here that exposure of HeLa cell cultures to 80% O2 for 2 days causes progressive growth inhibition and loss of reproductive capacity. This intoxication was correlated with inhibition of cellular O2 consumption and inactivation of 3 mitochondrial flavoproteins, i.e., partial inactivation of NADH and succinate dehydrogenases and total inactivation of alpha-ketoglutarate dehydrogenase. As alpha-ketoglutarate dehydrogenase controls the influx of glutamine/glutamate into the Krebs cycle, which is the major pathway for oxidative ATP generation in HeLa cells, the inactivation of alpha-ketoglutarate dehydrogenase was expectedly correlated with a net fall in glutamine/glutamate utilization. Furthermore, a simultaneous increase in glucose consumption and lactate production was observed, indicating that the cellular response to respiratory failure is to generate more ATP from glycolysis. In spite of this response, extensive depletion of ATP was observed. Thus, hyperoxia-induced growth inhibition and loss of clonogenicity seem to be due primarily to an impairment of mitochondrial energy metabolism resulting from inactivation of SH-group-containing flavoprotein enzymes localized at or near the inner mitochondrial membrane. These observations may be relevant for theories implicating loss of mitochondrial function as a prime factor in the aging process.  相似文献   

15.
We have recently shown that exposure of Chinese hamster ovary (CHO) cells to a toxic dose of normobaric hyperoxia (98% O2 for 3 days) caused a disturbance of cellular energy metabolism, that is, respiratory failure followed by stimulation of glycolytic activity and a net depletion of ATP. Respiratory failure was correlated with a selective inactivation of three mitochondrial enzymes, that is, partial inactivation of NADH dehydrogenase and virtually complete inactivation of succinate and alpha-ketoglutarate dehydrogenase activities (Schoonen et al., 1990). To elucidate the biochemical basis of resistance to hyperoxia in a previously described oxygen-resistant substrain of Chinese hamster ovary (CHO) cells, we compared the resistant cells with wildtype CHO cells with respect to several key parameters of oxidative and glycolytic energy metabolism. The two cell types were critically different in that the succinate and alpha-ketoglutarate dehydrogenases of the oxygen-resistant cells were relatively resistant to inactivation by hyperoxia, which may at least partly explain their enhanced capacity to respire and survive under hyperoxic conditions. Although the biochemical basis for the observed enzyme resistance to hyperoxic inactivation remains to be elucidated, the present data underscore the importance of succinate and alpha-ketoglutarate dehydrogenases as critical targets in hyperoxic killing of wildtype CHO cells.  相似文献   

16.
The effect of 5-n-alkyl(C19-C25) resorcinols isolated from Azotobacter chroococcum on the oxidation of succinate and NAD-dependent substrates (glutamate, alpha-ketoglutarate, malate, pyruvate) by rat liver mitochondria was studied, using the polarographic technique. With succinate, the above resorcinol lipids activated to some extent the 2,4-dinitrophenol-decoupled mitochondrial respiration, but markedly suppressed it (up to 95%) in the presence of NAD-dependent substrates. The activating and inhibiting effects correlated with the resorcinol lipid/mitochondrial proteins ratio and were observed, when the lipid concentration in the incubation mixture ranged from 2.4.10(-4) to 6.0.10(-4) M. The most striking inhibiting effect was observed with alpha-ketoglutarate as substrate. The results obtained suggest that 5-n-alkyl(C19-C25) resorcinols should be regarded as rotenone type regulators of cell respiration.  相似文献   

17.
Respiration, oxidative phosphorylation, calcium uptake, and the mitochondrial membrane potential of trophozoites of the malaria parasite Plasmodium berghei were assayed in situ after permeabilization with digitonin. ADP promoted an oligomycin-sensitive transition from resting to phosphorylating respiration. Respiration was sensitive to antimycin A and cyanide. The capacity of trophozoites to sustain oxidative phosphorylation was additionally supported by the detection of an oligomycin-sensitive decrease in mitochondrial membrane potential induced by ADP. Phosphorylation of ADP could be obtained in permeabilized trophozoites in the presence of succinate, citrate, alpha-ketoglutarate, glutamate, malate, dihydroorotate, alpha-glycerophosphate, and N,N,N',N'-tetramethyl-p-phenylenediamine. Ca(2+) uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca(2+) transport system in these mitochondria. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin, ATP, or GTP and not affected by atractyloside, ADP, glutamate, or malonate. Evidence for the presence of a mitochondrial uncoupling protein in P. berghei was also obtained by using antibodies raised against plant uncoupling mitochondrial protein. Together these results provide the first direct biochemical evidence of mitochondrial function in ATP synthesis and Ca(2+) transport in a malaria parasite and suggest the presence of an H(+) conductance in trophozoites similar to that produced by a mitochondrial uncoupling protein.  相似文献   

18.
Both NADH dehydrogenase (complex I) and aconitase are inactivated partially in vitro by superoxide (O2-.) and other oxidants that cause loss of iron from enzyme cubane (4Fe-4S) centers. We tested whether hypoxia-reoxygenation (H-R) by itself would decrease lung epithelial cell NADH dehydrogenase, aconitase, and succinate dehydrogenase (SDH) activities and whether transfection with adenoviral vectors expressing MnSOD (Ad.MnSOD) would inhibit oxidative enzyme inactivation and thus confirm a mechanism involving O2-. Human lung carcinoma cells with alveolar epithelial cell characteristics (A549 cells) were exposed to <1% O2-5% CO2 (hypoxia) for 24 h followed by air-5% CO2 for 24 h (reoxygenation). NADH dehydrogenase activity was assayed in submitochondrial particles; aconitase and SDH activities were measured in cell lysates. H-R significantly decreased NADH dehydrogenase, aconitase, and SDH activities. Ad.MnSOD increased mitochondrial MnSOD substantially and prevented the inhibitory effects of H-R on enzyme activities. Addition of alpha-ketoglutarate plus aspartate, but not succinate, to medium prevented cytotoxicity due to 2,3-dimethoxy-1,4-naphthoquinone. After hypoxia, cells displayed significantly increased dihydrorhodamine fluorescence, indicating increased mitochondrial oxidant production. Inhibition of NADH dehydrogenase, aconitase, and SDH activities during reoxygenation are due to excess O2-. produced in mitochondria, because enzyme inactivation can be prevented by overexpression of MnSOD.  相似文献   

19.
The present study investigates the effect of aspartate and glutamate on mitochondrial function during myocardial infarction (MI) in wistar rats. Male albino wistar rats were pretreated with aspartate [100 mg(kgbody weight)(-1) day(-1)] or glutamate [100 mg(kg body weight)(-1) day(-1)] intraperitoneally for a period of 7 days. Following amino acid treatment, MI was induced in rats by subcutaneous injection of isoproterenol [200 mg(kg body weight)(-1) day(-1)] for 2 days at an interval of 24 h. Isoproterenol (ISO) induction resulting in significant (P<0.05) increase in the levels of cardiac mitochondrial lipid peroxidation with a decrease in reduced glutathione level. The activities of glutathione peroxidase and glutathione reductase were significantly (P<0.05) decreased by ISO. ISO-induction also caused significant (P<0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome-c-oxidase). ISO significantly (P<0.05) reduced the cytochrome contents, ATP production, ADP/O ratio and oxidation of succinate in state 3/state 4 whereas significantly (P<0.05) increased NADH oxidation. Pretreatment with aspartate or glutamate significantly (P<0.05) reduced the alterations induced by ISO and maintained normal mitochondrial function. The present findings reveal the protective effect of aspartate and glutamate on cardiac mitochondrial function in myocardial infarction-induced rats.  相似文献   

20.
Riboflavin deficiency in rats caused a decrease in the activities of hepatic succinate dehydrogenase (50 %), L-α-glycerophosphate dehydrogenase (50 %) and xanthine oxidase (70 %). It also reduced to 50 % the rate of mitochondrial oxidation of succinate, β-hydroxybutyrate, α-ketoglutarate, glutamate, pyruvate and malate without changing ADP : O ratios, thus showing that riboflavin deficiency interferes with electron transport along the respiratory chain without noticably affecting phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号