首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cosmids containing a nodulation gene from Rhizobium loti NZP2037 were isolated using a 12.8 kb nod:: Tn5 EcoRI fragment from the Nod- mutant strain PN233, as a hybridisation probe. A physical map of the nod region was established using the enzymes EcoRI and HindIII and the site of insertion of Tn5 in PN233 determined. Site-specific exchange of the cloned nod:: Tn5 fragment demonstrated that Tn5, and not an indigenous insertion sequence, was responsible for the nod mutation in PN233. The nod cosmids isolated complemented the Nod- phenotype of strain PN233 but restoration of the Fix phenotype was variable suggesting a need for marker rescue to occur before nitrogen fixation occurred.Corresponding nod cosmids were isolated from a R. loti strain, NZP2213, that forms ineffective tumour-like structures on Lotus pedunculatus and from the slow-growing strain (Bradyrhizobium sp), CC814s, by in planta complementation of PN233. Hybridisation experiments suggested that the nod gene region of R. loti NZP2037 was more homologous to Bradyrhizobium strain CC814s than with a nod gene region of R. trifolii strain PN100. However, transfer of the R. trifolii nod cosmid into the R. loti Nod mutant PN233, restored the ability of this strain to initiate nodules on Lotus pedunculatus.  相似文献   

2.
Fourteen heat resistant mutant strains were isolated from a wild-type strain (PP201, Nod+ Fix+) of Rhizobium sp. (Cajanus) by giving it a heat shock of 43°C. These mutant strains showed a greater increase in optical density (O.D.) and a higher viable cell count in both rhizospheric and non-rhizospheric soil at high temperature. Symbiotic studies showed that pigeon pea plants inoculated with a few mutant strains had ineffective nodules (Nod+ Fix) under controlled temperature (43°C) conditions, but under natural high temperature (40–45°C) conditions, the host plants infected with all the mutant strains showed higher total shoot nitrogen than the plants inoculated with the parent strain. Four mutant strains (HR-3, HR-6, HR-10 and HR-12) were found to be highly efficient for all the symbiotic parameters, and thus have the potential to be used as bioinoculants in the North-Western regions of India during the summer season.  相似文献   

3.
Summary InRhizobium phaseoli strain 8002, the 190 Md plasmid pRP2JI which determines the ability to produce nitrogen-fixing nodules onPhaseolus beans (Nod+ Fix+) and the production of melanin on L-tyrosine-containing media (Mel+), was shown to be transmissible by conjugation to otherRhizobium strains. When pRP2JI was transferred to Nod- strains ofR. leguminosarum (which normally nodulates peas) the transconjugants gained the ability to nodulatePhaseolus beans and to make melanin.Out of 187 derivatives of strain 8002 carrying pRP2JI plasmids into which the transposon Tn5 had been inserted, six were Fix- Nod+ Mel+, one was Fix- Nod+ Mel- and four were Fix+ Nod+ Mel-. Three other derivatives of strain 8002 were Nod- Mel-; these had suffered deletions of c 30 Md in pRP2JI. Thus the genes for melanin production and nodulation appear to be closely linked, but melanin production is not necessary for the induction of nitrogen-fixing nodules onPhaseolus beans.  相似文献   

4.
Summary Selection was made for the transposition of the kanamycin resistance transposon Tn5 from a location on the chromosome of R. leguminosarum into a transmissible, bacteriocinogenic plasmid that also carries genes required for the induction of nitrogen-fixing nodules on peas.One hundred and sixty independent insertions into transmissible plasmids were isolated. When these plasmids were transferred by conjugation into a non-nodulating strain, which carries a deletion in one of its resident plasmids, of the 160 isolates tested 14 yielded transconjugants that formed nodules that did not fix nitrogen (Fix-) and in a further 15 cases the transconjugants were unable to form nodules (were Nod-). When transferred to a symbiotically proficient strain (i.e. Nod+ Fix+) none of the transconjugants was symbiotically defective; thus the mutations were not dominant.When kan was transduced from the clones that generated Fix- transconjugants into a Fix+ recipient the majority of transductants inherited Fix- indicating that the insertion of Tn5 had induced the symbiotic mutations. Transduction of kan, from the clones that failed to donate Nod+ by conjugation to strain 6015, occurred at barely detectable frequencies and it was not possible to demonstrate transduction of Nod-. kan was co-transduced with Nod+ from some of the clones and some of these transductants also inherited the ability to produce medium bacteriocin and to transfer at high frequency by conjugation. Thus the genes for all these characters are closely linked.  相似文献   

5.
The fatty acid (FA) composition of bacteroid and peribacteroid membranes was studied in the symbiotic pairs differing in their nitrogen-fixing efficiency; the results are compared with the FA composition of plasmalemma and free-living rhizobia. The experiments involved lupine plants inoculated with strains of Bradyrhizobium lupini359a (Nod+Fix+) and 400 (Nod+Fix L) manifesting high and low nitrogen-fixing efficiency, respectively, and broad bean plants inoculated with strains of Rhizobium leguminosarum97 (Nod+Fix+) and 87 (Nod+Fix L) of high and low nitrogen-fixing efficiency, respectively. We showed that the rhizobia of the strains 359a and 97 were able to form nodules with peribacteroid membranes containing FA mainly or exclusively of plant origin. These strains were able to develop effective symbiotic pairs with legume plants. The use of strains 400 and 87 resulted in the formation of nodules with peribacteroid membranes containing typical bacterial (branched-chain) FAs; these strains were characterized by an ineffective symbiosis.  相似文献   

6.
Symbiotically defective mutants of cowpea rhizobia strain IRC256 were isolated by random Tn5 mutagenesis and characterized. One auxotroph (MS1) requiring adenine and thiamine was a non-nodulating mutant (Nod) and three prototrophic mutants were Nod+ Fix which formed small and ineffective nodules on cowpeas (Vigna unguiculata). Acetylene reduction activity of the Nod+ Fix mutants was reduced to 80–94% of that of the wild-type strain. The non-nodulating mutant (MS1) induced root-hair curling but did not show any nodule initiation or nodule development. Ultrastructural examination of nodules formed by Fix mutants showed that these contained few bacteroids, indicating either early senescence or a reduction in bacterial release into the cytoplasm of the host cell. DNA hybridization of total DNAs from a representative number of Tn5 mutants showed that each of them had one copy of the transposon Tn5 which was randomly inserted into the genome of cowpea rhizobia.  相似文献   

7.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

8.
Summary Two strains of the soybean endosymbiont Bradyrhizobium japonicum, USDA 110 and 61 A101 C, were mutagenized with transposon Tn5. After plant infection tests of a total of 6,926 kanamycin and streptomycin resistant transconjugants, 25 mutants were identified that are defective in nodule formation (Nod-) or nitrogen fixation (Fix-). Seven Nod- mutants were isolated from strain USDA 110 and from strain 61 A101 C, 4 Nod- mutants and 14 Fix- mutants were identified. Subsequent auxotrophic tests on these symbiotically defective mutants identified 4 His- Nod- mutants of USDA 110. Genomic Southern analysis of the 25 mutants revealed that each of them carried a single copy of Tn5 integrated in the genome. Three 61 A101 C Fix- mutants were found to have vector DNA co-integrated along with Tn5 in the genome. Two independent DNA regions flanking Tn5 were cloned from the three nonauxotrophic Nod- mutants and one His-Nod- mutant of USDA 110. Homogenotization of the cloned fragments into wild-type strain USDA 110 and subsequent nodulation assay of the resulting homogenotes confirmed that the Tn5 insertion was responsible for the Nod- phenotype. Partial EcoR1 restriction enzyme maps around the Tn5 insertion sites were generated. Hybridization of these cloned regions to the previously cloned nod regions of R. meliloti and nif and nod regions of B. japonicum USDA 110 showed no homology, suggesting that these regions represent new symbiotic clusters of B. japonicum.  相似文献   

9.
Evolution of beneficial plant–microbe symbioses is presented as a result of selective processes induced by hosts in the associated microbial populations. These processes ensure a success of “genuine mutualists” (which benefit the host, often at the expense of their own fitness) in competition with “symbiotic cheaters” (which consume the resources provided by host without expressing the beneficial traits). Using a mathematical model describing the cyclic microevolution of rhizobia–legume symbiosis, we suggest that the selective pressures in favor of N2-fixing (Fix+) strains operate within the in planta bacterial population due to preferential allocation of C resources into Fix+ nodules (positive partners’ feedbacks). Under the clonal infection of nodules, Fix+ strains (“genuine mutualists”) are supported by the group (inter-deme, kin) selection while under the mixed infections, this selection is ineffective since the Fix+ strains are over-competed by Fix ones (“symbiotic cheaters”) in the nodular habitats. Nevertheless, under mixed infections, Fix+ strains may be supported due to the coevolutionary responses form plant population which induce the mutualism-specific types of natural (group, individual) selection including the frequency dependent selection implemented in rhizobia population during the competition for host infection. Using the model of multi-strain bacterial competition for inoculation of symbiotic (rhizospheric, nodular) habitats, we demonstrate that the individual selection in favor of host-specific mutualist genotypes is more intensive than in favor of non-host-specific genotypes correlating the experimental data on the coordinated increases of symbiotic efficiency and specificity in the rhizobia–legume coevolution. However, an overall efficiency of symbiotic system is maximal when the non-host-specific mutualists are present in rhizobia population, and selection in favor of these mutualists operating at the whole population level is of key importance for improving the symbiosis. Construction of the agronomically valuable plant–microbe systems should provide the optimization of host-specific versus non-host-specific mutualists’ composition in legume inoculants combined with the clonal penetration of these mutualists into the nodules.  相似文献   

10.
The nitrogen‐fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (LjAPN1), encodes a nepenthesin‐type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain‐specific Fix phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen‐fixing) symbiosis in a rhizobial strain‐dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.  相似文献   

11.
Morandi D  Prado E  Sagan M  Duc G 《Mycorrhiza》2005,15(4):283-289
From a pool of Medicago truncatula mutants—obtained by gamma-irradiation or ethyl methanesulfonate mutagenesis—impaired in symbiosis with the N-fixing bacterium Sinorhizobium meliloti, new mutants are described and genetically analysed, and for already reported mutants, complementary data are given on their phenotypic and genetic analysis. Phenotypic data relate to nodulation and mycorrhizal phenotypes. Among the five new mutants, three were classified as [Nod+ Fix Myc+] and the mutations were ascribed to two loci, Mtsym20 (TRV43, TRV54) and Mtsym21 (TRV49). For the two other new mutants, one was classified as [Nod–/+ Myc+] with a mutation ascribed to gene Mtsym15 (TRV48), and the other as [Nod Myc-/+] with a mutation ascribed to gene Mtsym16 (TRV58). Genetic analysis of three previously described mutants has shown that [Nod–/+ Myc+] TR74 mutant can be ascribed to gene Mtsym14, and that [Nod–/+ Myc–/+] TR89 and TRV9 mutants are ascribed to gene Mtsym2 (dmi2). Using a detailed analysis of mycorrhizal phenotype, we have observed a delayed typical arbuscular mycorrhizal formation on some mutants that present thick lens-shaped appressoria. This phenotype was called [Myc–/+] and mutants TR25, TR26, TR89, TRV9, P1 and Y6 were reclassified as [Myc–/+]. Mutant P1 was reclassified as [Nod–/+] because of a late nodulation observed on roots of this mutant.  相似文献   

12.
Physiological alterations and regulation of heterocyst and nitrogenase formation have been studied in Het Fix mutant strain of diazotrophic cyanobacterium Anabaena variabilis. Het Fix mutant strain of A. variabilis has been isolated by N-methyl-N′-nitro-N″-nitrosoguanidine (NTG) mutagenesis and was screened with the penicillin enrichment (500 μg ml−1). Growth, heterocyst differentiation, nitrogenase and glutamine synthetase (biosynthetic and transferase), 14CO2-fixation, nitrate reductase (NR), nitrite reductase (NiR), glucose-6-phosphate dehydrogenase (G6PDH), and isocitrate dehydrogenase (IDH) activities, and NO3 , NO2 , and NH4 + uptake and whole cell protein profile in different metabolic conditions were studied in the Het Fix mutant strain taking wild-type A. variabilis as reference. Het Fix mutant strain was incapable of assimilating elemental nitrogen (N2) due to its inability to form heterocysts and nitrogenase and this was the reason for its inability to grow in BG-110 medium (free from combined nitrogen). In contrast, wild-type strain grew reasonably well in the absence of combined nitrogen sources and also showed heterocyst differentiation (8.5%) and nitrogenase activity (10.8 ηmol C2H4 formed μg−1 Chl a h−1) in N2-medium. Wild-type strain also exhibited higher NR, NiR, and GS activities compared to its Het Fix mutant strain, which may presumably be due to acquisition of high uptake of NO3 , NO2 , and NH2 +. Wild-type strain in contrast to its Het Fix mutant strain also exhibited high level of G6PDH, IDH, and 14CO2 fixation activities. Low levels of G6PDH and IDH activities in Het Fix mutant strain further confirmed the lack of heterocyst differentiation and nitrogenase activity in the Het Fix mutant strain. NR, NiR, and GS activities in both the strains were energy-dependent and the energy required is mainly derived from photophosphorylation. Furthermore, it was found that de novo protein synthesis is necessarily required for the activities of NR, NiR, and GS in both wild-type and its Het Fix mutant strain. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

13.
Summary Symbiotic and auxotrophic mutants of Rhizobium japonicum strain USDA191 were isolated using Tn5 mutagenesis and techniques that cause plasmid deletions and plasmid curing. Characterization of several mutants that are unable to nodulate (Nod-) or unable to fix nitrogen (Fix_) showed that nod and nif genes are located within one regions of a 200 MD plasmid (pSym191). Blot hybridization analysis of plasmids in other fast-growing R. japonicum strains showed that nod as well as nif sequences are located on plasmids in eight strains but are apparently carried in the chromosome in two strains.  相似文献   

14.
Summary R. meliloti strain 41 (Rm41) was shown to harbour two indigenous plasmids with molecular weights of 140 Mdal (pRmc41a) and more than 300 Mdal (pRme41b), respectively. Using a heat-treatment procedure, derivatives of Rm41 defective in nodulation (Nod-) or nitrogen fixation (Fix-) have been readily obtained. In some Nod- mutants the deletion of a segment of plasmid pRme41b was found.Based on the demonstrated homology between the nitrogen fixation (nif) genes of Klebsiella pneumoniae and of R. meliloti the Rhizobium nif region has been cloned into the cosmid vector pHC79, then recloned into pBR322 and the restriction map of the nif region has been determined. 32P-labelled nick-translated probe prepared from the cloned nif DNA fragment hybridized to pRme41b of Rm41 but for most Nod- mutants this hybridization was not detected. Hybridization of a cosmid containing Rm41 DNA to total DNA digests from the wild-type bacterium and from a series of Nod- mutants revealed that at least a 24 kb DNA fragment including the nif structural genes was missing from most of the Nod- mutants. These results, together with the genetic analyses of these symbiotic mutations suggest that some nod and fix genes are located on pRme41b.  相似文献   

15.
Summary 600,000 seedlings ofAlnus crispa were inoculated with a 111 mixture of theFrankia strains ACN1 AG , AGN1 exo AG and MGP10i. After 3 successive inoculations and screenings, one individual, AC-4, was selected as non-nodulating (Nod) with Frankiae. This selected individual AC-4 (Nod) and two other clones ofA. crispa, AC-2 and AC-5, known for their ability to nodulate (Nod+) and two other clones ofA. crispa, AC-2 and AC-5, known for their ability to nodulate (Nod+) withFrankia werein vitro propagated. The different clones ofA. crispa in culture required different kinds and concentrations of sugar during the in vitro multiplication and rooting stages. Nodulation tests using 7Frankia strains indicated that the clone AC-4 (Nod) was non-nodulating with 6 of the 7Frankia strains tested. One strain,Frankia ANNI, isolated from one unique nodule produced on the mother-plant AC-4, induced 38% of the AC-4 plantlets to nodulate but with a number of nodules 10 to 20 times less than the clones AC-2 (Nod+) and AC-5 (Nod+). Morphological observations of the roots of AC-4 (Nod) indicated that this clone had few and abnormally short root hairs.  相似文献   

16.
Exopolysaccharides (EPS) of nodulating strains of Rhizobium trifolii and Rhizobium leguminosarum added to red clover seedlings before inoculation reduced the number of nodules. The inhibition of the nodulation was correlated with the amount of EPS. The preparations of EPS from mutants defective in early stages of nodulation (Roa- or Hac-) did not affect the nodulation, whereas EPS from mutants deficient in late stages (post Hac-) exerted an inhibitory effect.Inactive preparation of EPS contained less O-acetyl groups and pyruvic acid residues. Deacetylation and depyruvylation of EPS from R. trifolii Nod+ abolished it inhibitory effect. It was concluded that noncarbohydrate substitutions (acetate, pyruvate) are involved in EPS effect.Abbreviations CPS capsular polysaccharide - EPS exopolysaccharide - LPS lipopolysaccharide - Nod nodulation - Fix nitrogen fixation - Hac root hairs curling - Roa root adhesion  相似文献   

17.
The failure of Vigna luteola L. to colonize tropical montane regions of Venezuela with acid P-deficient soils that lack vegetation has been mainly attributed to the inability of indigenous arbuscular mycorrhizal fungi (AMFi) to be effective suppliers of P to this host plant. To test this hypothesis, Vigna luteola plants were grown in non sterile soil collected from this habitat. Plants became nodulated by indigenous rhizobia (Nod+) and the roots were colonized by AMFi (AMFi+). Some plants were inoculated with the arbuscular mycorrhizal fungus Rhizophagus manihotis (AMFg+). Other plants were fertilized with 6 mM nitrate and 2 mM P to inhibit nodulation (Nod-) and AMFi colonization (AMFi-), respectively and these served as controls. The Nod+AMFi+ plants displayed the smallest shoot and nodule dry weights upon harvest, the poorest AMF colonization, lowest foliar mineral content (N, P, Mg, Mn, Fe, Zn, and Cu), highest leaf ureide concentrations and lowest soil dehydrogenase, urease and acid phosphatase activities. Greater growth, nodulation, nutrient uptake, photosynthesis, catabolism of ureides in leaves, leaf superoxide dismutase and soil enzymatic activities were found in Nod+AMFg+ plants. The Nod-AMFg+ plants grew even better attributed to their higher P uptake that was allocated mainly to the photosynthetic apparatus rather than to N2-fixation. The results showed that V. luteola plants inoculated with R. manihotis and nodulated by indigenous rhizobia are capable successfully of colonizing open montane regions devoid of ground cover vegetation. The Nod+AMFg+ plants had greater growth, nodulation and root colonization by AMFg resulting in improved nutrient condition, enhanced uptake of nitrate and high catabolism of ureides in leaves than Nod+AMFi+ plants. However, more research is needed before the inoculation of open montane regions with AMFg can be recommended to land managers since a) the enhanced N2 fixation rate in Nod+AMFg+ plants have an extra cost of 1.2 mg P kg−1 leaf dry weight plant−1 which could places an extra burden on the plants grown in the P-deficient soils, and b) the possible impact of AMFg on the microbiology of these former forest soils must be assessed.  相似文献   

18.
Summary The slow-growing soybean symbiont, Rhizobium japonicum, has not readily been accessible so far to classical mutational analysis of genes responsible for symbiotic nitrogen fixation. We have overcome part of this problem by the successful application of a site-directed mutagenesis technique to this organism. The following steps are involved: (i) local Tn5 mutagenesis, in E. coli, of cloned R. japonicum DNA (e.g. the nifDK operon); (ii) conjugational transfer of the mutated DNA into R. japonicum using vectors which are unable to replicate there; (iii) selection of R. japonicum exconjugants which have exchanged their wild-type genomic DNA region for the Tn5-containing fragment by homologous recombination. While using this technique it appeared mandatory to distinguish double-crossover-events (true replacements) from single-crossover events (replicon fusions or cointegrations). Only the true replacement mutants were genetically stable; their phenotypes were determined with respect to nodulation (Nod) and nitrogen fixation (Fix) by plant infection tests. Tn5 mutations within nifD and nifK caused a Nod+ Fix- phenotype, whereas mutants with insertions in the immediate vicinity on either side of nifDK were found to be Nod+ Fix+, suggesting that genes flanking nifDK may not be involved in the nitrogen fixing symbiosis. Nodule reisolates were found to carry Tn5 at their original locations.  相似文献   

19.
M. Sagan  B. Ney  G. Duc 《Plant and Soil》1993,153(1):33-45
Pisum sativum L. is known for high seed and protein yields but also for.yield instability. Because legumes utilize two sources of nitrogen (atmospheric N2 fixed in nodules and assimilation of soil mineral N), studies on their nitrogen nutrition is more complex than in other plants. In this work, pea symbiotic mutants (with no nodules at all ([Nod-]), with inefficient nodules ([Nod+Fix-]) or showing an hypernodulating and a ‘nitrate-tolerant symbiosis’ character ([Nod++Nts]), their semi-leafless isogenic homologues and the parental control line cv Frisson were fertilized with three levels of mineral nitrogen (0, 25 or 50 g N m-2) to generate a range of mineral nitrogen regimes in the same genetic background. Impact of the source and level of nitrogen nutrition was measured on reproductive development, growth, nitrogen accumulation and seed yield. It was shown that a N deficiency induced flowering termination. It also led to a large decrease in the number of seeds produced and the amount of N accumulated in forage and in seeds, when little effect was observed on the progression rates of reproductive stages along the stem. The single seed weight and the amount of dry matter accumulated in forage neither responded strongly to N deficiency. The source of nitrogen was shown to be of little importance to yield but the application of about 50 g N m-2 was necessary to reach the yield of the control cv Frisson when exclusive assimilation was ensuring the N requirements of the plant. Despite the fact that the nitrate-tolerant and hypernodulating mutant P64 used in this study did not yield as well as the parent cv Frisson, it is proposed that [Nod++Nts] characters could act as a yield regulating factor.  相似文献   

20.
We propose a model to describe the changes taking place in biochemical processes/events to explain the development of heterocyst and nitrogenase in a diazotrophic cyanobacterium Anabaena variabilis. For this purpose, a mutant strain of A. variabilis lacking heterocyst differentiation and incapable of growth with dinitrogen as the sole source of nitrogen has been isolated after nitrosoguanidine (NTG) mutagenesis and selection by penicillin enrichment. The mutant strain (Het Fix) thus isolated has morphological variation and was incapable of reducing acetylene under anaerobic conditions, indicating its mutational loss of the process of nitrogen fixation. The Het Fix mutant strain had reduced glutamine synthetase (transferase) activity compared with its wild-type counterpart, suggesting a link between nif gene expression and the expression of gln A, the structural gene of GS. The Het Fix mutant strain compared with its wild-type strain also had an extremely high level of phycobiliprotein and a low level of carotenoids. Furthermore, the coiling of vegetative filaments in the Het Fix mutant strain, which reduced the surface area to be exposed to light, was a direct indication of the chromatic adaptation, because the mutant strain was found to be photosensitive, showing bleaching of the cells under high light intensity. Received: 13 December 2000 / Accepted: 9 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号