首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kulsam Ali  Peter Heathcote  Saul Purton 《BBA》2006,1757(12):1623-1633
A conserved tryptophan residue located between the A1B and FX redox centres on the PsaB side of the Photosystem I reaction centre has been mutated to a glycine in Chlamydomonas reinhardtii, thereby matching the conserved residue found in the equivalent position on the PsaA side. This mutant (PsaB:W669G) was studied using EPR spectroscopy with a view to understanding the molecular basis of the reported kinetic differences in forward electron transfer from the A1A and the A1B phyllo(semi)quinones. The kinetics of A1 reoxidation due to forward electron transfer or charge recombination were measured by electron spin echo spectroscopy at 265 K and 100 K, respectively. At 265 K, the reoxidation kinetics are considerably lengthened in the mutant in comparison to the wild-type. Under conditions in which FX is initially oxidised the kinetics of charge recombination at 100 K are found to be biphasic in the mutant while they are substantially monophasic in the wild-type. Pre-reduction of FX leads to biphasic kinetics in the wild-type, but does not alter the already biphasic kinetic properties of the PsaB:W669G mutant. Reduction of the [4Fe-4S] clusters FA and FB by illumination at 15 K is suppressed in the mutant. The results provide further support for the bi-directional model of electron transfer in Photosystem I of C. reinhardtii, and indicate that the replacement of the tryptophan residue with glycine mainly affects the redox properties of the PsaB bound phylloquinone A1B.  相似文献   

2.
We studied the kinetics of reoxidation of the phylloquinones in Chlamydomonas reinhardtii Photosystem I using site-directed mutations in the PhQ(A)-binding site and of the residues serving as the axial ligand to ec3(A) and ec3(B) chlorophylls. In wild type PS I, these kinetics are biphasic, and mutations in the binding region of PhQ(A) induced a specific slowing down of the slow component. This slowing allowed detection of a previously unobserved 180-ns phase having spectral characteristics that differ from electron transfer between phylloquinones and F(X). The new kinetic phase thus reflects a different reaction that we ascribe to oxidation of F(X)(-) by the F(A/B) FeS clusters. These absorption changes partly account for the differences between the spectra associated with the two kinetic components assigned to phylloquinone reoxidation. In the mutant in which the axial ligand to ec3(A) (PsaA-Met688) was targeted, about 25% of charge separations ended in P(700)(+)A(0)(-) charge recombination; no such recombination was detected in the B-side symmetric mutant. Despite significant changes in the amplitude of the components ascribed to phylloquinone reoxidation in the two mutants, the overall nanosecond absorption changes were similar to the wild type. This suggests that these absorption changes are similar for the two different phylloquinones and that part of the differences between the decay-associated spectra of the two components reflect a contribution from different electron acceptors, i.e. from an inter-FeS cluster electron transfer.  相似文献   

3.
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).  相似文献   

4.
Kinetic analysis using pulsed electron paramagnetic resonance (EPR) of photosynthetic electron transfer in the photosystem I reaction centres of Synechocystis 6803, in wild-type Chlamydomonas reinhardtii, and in site directed mutants of the phylloquinone binding sites in C. reinhardtii, indicates that electron transfer from the reaction centre primary electron donor, P700, to the iron-sulphur centres, Fe-S(X/A/B), can occur through either the PsaA or PsaB side phylloquinone. At low temperature reaction centres are frozen in states which allow electron transfer on one side of the reaction centre only. A fraction always donates electrons to the PsaA side quinone, the remainder to the PsaB side.  相似文献   

5.
We have used pulsed electron paramagnetic resonance (EPR) measurements of the electron spin polarised (ESP) signals arising from the geminate radical pair P700(z.rad;+)/A(1)(z.rad;-) to detect electron transfer on both the PsaA and PsaB branches of redox cofactors in the photosystem I (PSI) reaction centre of Chlamydomonas reinhardtii. We have also used electron nuclear double resonance (ENDOR) spectroscopy to monitor the electronic structure of the bound phyllosemiquinones on both the PsaA and PsaB polypeptides. Both these spectroscopic assays have been used to analyse the effects of site-directed mutations to the axial ligands of the primary chlorophyll electron acceptor(s) A(0) and the conserved tryptophan in the PsaB phylloquinone (A(1)) binding pocket. Substitution of histidine for the axial ligand methionine on the PsaA branch (PsaA-M684H) blocks electron transfer to the PsaA-branch phylloquinone, and blocks photoaccumulation of the PsaA-branch phyllosemiquinone. However, this does not prevent photoautotrophic growth, indicating that electron transfer via the PsaB branch must take place and is alone sufficient to support growth. The corresponding substitution on the PsaB branch (PsaB-M664H) blocks kinetic electron transfer to the PsaB phylloquinone at 100 K, but does not block the photoaccumulation of the phyllosemiquinone. This transformant is unable to grow photoautotrophically although PsaA-branch electron transfer to and from the phyllosemiquinone is functional, indicating that the B branch of electron transfer may be essential for photoautotrophic growth. Mutation of the conserved tryptophan PsaB-W673 to leucine affects the electronic structure of the PsaB phyllosemiquinone, and also prevents photoautotrophic growth.  相似文献   

6.
The spin-correlated radical pair [P(700)(+)A(1)(-)] gives rise to a characteristic "out-of-phase" electron spin-echo signal. The electron spin-echo envelope modulation (ESEEM) of these signals has been studied in thylakoids prepared from the wild-type strain of Chlamydomonas reinhardtii and in two site-directed mutants, in which the methionine residue which acts as the axial ligand to the chlorin electron acceptor A(0) has been substituted with a histidine either on the PsaA (PsaA-M684H) or the PsaB (PsaB-M664H) reaction center subunits. The analysis of the time domain ESEEM provides information about the spin-spin interaction in the [P(700)(+)A(1)(-)] radical pair, and the values of the dipolar (D) and the exchange (J) interaction can be extracted. From the distance dependence of the dipolar coupling term, the distance between the unpaired electron spin density clouds of the primary donor P(700)(+) and the phyllosemiquinone A(1)(-) can be determined. The [P(700)(+)A(1)(-)] ESEEM spectrum obtained in wild-type thylakoids can be reconstructed using a linear combination of the spectra measured in the PsaA and PsaB A(0) mutants, demonstrating that electron transfer resulting in charge separation is occurring on both the PsaA and PsaB branches. The [P(700)(+)A(1B)(-)] distance in the point dipole approximation in the PsaA-M684H mutant is 24.27 +/- 0.02 A, and the [P(700)(+)A(1A)(-)] distance in the PsaB-M664H mutant is 25.43 +/- 0.01 A. An intermediate value of 25.01 +/- 0.02 A is obtained in the wild-type membranes which exhibit both spin-polarized pairs.  相似文献   

7.
Point mutations were introduced near the primary electron acceptor sites assigned to A0 in both the PsaA and PsaB branches of Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. The residues Met688PsaA and Met668PsaB, which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3 chlorophylls, were changed to leucine and asparagine (chlorophyll notation follows Jordan et al., 2001). The removal of the ligand is expected to alter the midpoint potential of the A0/A0- redox pair and result in a change in the intrinsic charge separation rate and secondary electron transfer kinetics from A0- to A1. The dynamics of primary charge separation and secondary electron transfer were studied at 690 nm and 390 nm in these mutants by ultrafast optical pump-probe spectroscopy. The data reveal that mutations in the PsaB branch do not alter electron transfer dynamics, whereas mutations in the PsaA branch have a distinct effect on electron transfer, slowing down both the primary charge separation and the secondary electron transfer step (the latter by a factor of 3-10). These results suggest that electron transfer in cyanobacterial Photosystem I is asymmetric and occurs primarily along the PsaA branch of cofactors.  相似文献   

8.
The recent crystal structure of photosystem I (PSI) from Thermosynechococcus elongatus shows two nearly symmetric branches of electron transfer cofactors including the primary electron donor, P(700), and a sequence of electron acceptors, A, A(0) and A(1), bound to the PsaA and PsaB heterodimer. The central magnesium atoms of each of the putative primary electron acceptor chlorophylls, A(0), are unusually coordinated by the sulfur atom of methionine 688 of PsaA and 668 of PsaB, respectively. We [Ramesh et al. (2004a) Biochemistry 43:1369-1375] have shown that the replacement of either methionine with histidine in the PSI of the unicellular green alga Chlamydomonas reinhardtii resulted in accumulation of A(0)(-) (in 300-ps time scale), suggesting that both the PsaA and PsaB branches are active. This is in contrast to cyanobacterial PSI where studies with methionine-to-leucine mutants show that electron transfer occurs predominantly along the PsaA branch. In this contribution we report that the change of methionine to either leucine or serine leads to a similar accumulation of A(0)(-) on both the PsaA and the PsaB branch of PSI from C. reinhardtii, as we reported earlier for histidine mutants. More importantly, we further demonstrate that for all the mutants under study, accumulation of A(0)(-) is transient, and that reoxidation of A(0)(-) occurs within 1-2 ns, two orders of magnitude slower than in wild type PSI, most likely via slow electron transfer to A(1). This illustrates an indispensable role of methionine as an axial ligand to the primary acceptor A(0) in optimizing the rate of charge stabilization in PSI. A simple energetic model for this reaction is proposed. Our findings support the model of equivalent electron transfer along both cofactor branches in Photosystem I.  相似文献   

9.
A spinach plastocyanin (Pc) mutant, Pc(Leu12His), has been constructed by site-directed mutagenesis and expressed in Escherichia coli to probe the importance of the hydrophobic patch in the interaction with Photosystem 1. The mutant has been characterized by optical absorption, EPR spectroscopy and redox titration. The electron transfer to Photosystem 1 was investigated by flash-induced time-resolved absorption measurements at 830 nm. The Pc(Leu12His) mutant showed a major change in the Photosystem 1 kinetics compared to wild-type Pc. In contrast to the biphasic Photosystem 1 reduction observed for the physiological reaction partner, only the slow phase was discerned when Pc(Leu12His) replaced wild-type Pc as the electron donor. The reaction showed a hyperbolic dependence with increasing Pc concentration, saturating at a rate constant value of 2000 s-1, which is about 10 times slower than the corresponding rate constant for wild-type Pc. Obviously, this position i s critical for a proper reaction. Moreover, the reaction showed a titrating behavior with a pKa of 6.7. Thus, it appears that both shape and charge of the residue in this position are important. A plausible reaction mechanism for electron transfer between wild-type Pc and Photosystem 1 is discussed. The role of electrostatic interactions may be that of long-range guidance and initial recognition that allow the two proteins to seek a pre-docking configuration(s). Then a short-range rearrangement(s), involving also hydrophobic interactions, forms an optimum docking configuration prior to electron transfer.  相似文献   

10.
The x-ray structure analysis of photosystem I (PS I) crystals at 4-A resolution (Schubert et al., 1997, J. Mol. Biol. 272:741-769) has revealed the distances between the three iron-sulfur clusters, labeled F(X), F(1), and F(2), which function on the acceptor side of PS I. There is a general consensus concerning the assignment of the F(X) cluster, which is bound to the PsaA and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors labeled F(1) and F(2) on the electron density map and the F(A) and F(B) clusters defined by electron paramagnetic resonance (EPR) spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429-3439;, Vassiliev et al., 1998, Biophys. J. 74:2029-2035) provided evidence that F(A) is the cluster proximal to F(X), and F(B) is the cluster that donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates of electron transfer between the iron-sulfur clusters F(X), F(A), and F(B). The experimentally determined kinetics of P700(+) dark relaxation in PS I complexes (both F(A) and F(B) are present), HgCl(2)-treated PS I complexes (devoid of F(B)), and P700-F(X) cores (devoid of both F(A) and F(B)) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the asymmetrical position of iron-sulfur clusters F(1) and F(2) relative to F(X), supports the F(X) --> F(A) --> F(B) --> Fd sequence of electron transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P700(+) reduction and F(X)(-) oxidation, we estimate the equilibrium constant of electron transfer between F(X) and F(A) at room temperature to be approximately 47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of F(X) and F(A), as determined by low-temperature EPR spectroscopy.  相似文献   

11.
Five nitrogen fixing cyanobacterial strains have been found to contain PsaB2, an additional and divergent gene copy for the Photosystem I reaction center protein PsaB. In all five species the divergent gene, psaB2, is located separately from the normal psaAB operon in the genome. The protein, PsaB2, was recently identified in heterocysts of Nostoc punctiforme sp. strain PCC 73102. 12 conserved amino acid replacements and one insertion, were identified by a multiple sequence alignment of several PsaB2 and PsaB1 sequences. Several, including an inserted glutamine, are located close to the iron-sulfur cluster F(X) in the electron transfer chain. By homology modeling, using the Photosystem I crystal structure as template, we have found that the amino acid composition in PsaB2 will introduce changes in critical parts of the Photosystem I protein structure. The changes are close to F(X) and the phylloquinone (PhQ) in the B-branch, indicating that the electron transfer properties most likely will be affected. We suggest that the divergent PsaB2 protein produces an alternative Photosystem I reaction center with different structural and electron transfer properties. Some interesting physiologcial consequences that this can have for the function of Photosystem I in heterocysts, are discussed.  相似文献   

12.
Photosystem I contains two potential electron transfer pathways between P(700) and F(X). These branches are made up of the electron transfer chain components A, A(0), and A(1). The primary electron acceptor A(0) is a chlorophyll a monomer that could be one or both of the two chlorophyll molecules, eC-A(3)/eC-B(3), identified in the 2.5 A resolution structure. The eC-A(3)/eC-B(3) chlorophylls are both coordinated by the sulfur atom of a methionine. This coordination is highly unusual, as interactions between the acid Mg(2+) and the soft base sulfur are weak. The eC-A(3)/eC-B(3) chlorophylls also are located close to one of the connecting chlorophylls that may link the antenna and the electron transfer chain chlorophylls. Due to their location in the structure, the eC-A(3)/eC-B(3) chlorophylls may play a role in both excitation energy transfer and electron transfer. To test the role of the eC-A(3)/eC-B(3) chlorophylls in electron transfer, Met-684 of PsaA and Met-664 of PsaB have been changed to His, Ser, and Leu. Replacement of either M(A684) or M(B664) results in a significant alteration in growth phenotype. The His and Leu mutants are very light sensitive in the presence of oxygen. Growth is impaired to a greater extent in the B-side mutants. However, all of the mutants are able to grow anaerobically at comparable rates. The His and Ser mutants all accumulate PSI at a level similar to that of wild type, whereas the Leu mutants have reduced amounts of PSI. Ultrafast transient absorbance measurements show that the (A(0)(-) - A(0)) difference signal accumulates in the MH(A684) and MH(B664) mutants under neutral conditions, demonstrating that electron transfer between A(0)(-) and A(1) is blocked or significantly slowed. The results show that both the A-branch and the B-branch of the ETC are active in PSI from Chlamydomonas reinhardtii.  相似文献   

13.
In Photosystem 1 (PS1), phylloquinone (PhQ) acts as a secondary electron acceptor from chlorophyll ec(3) and also as an electron donor to the iron-sulfur cluster F(X). PS1 possesses two virtually equivalent branches of electron transfer (ET) cofactors from P(700) to F(X), and the lifetime of the semiquinone intermediate displays biphasic kinetics, reflecting ET along the two different branches. PhQ in PS1 serves only as an intermediate in ET and is not normally fully reduced to the quinol form. This is in contrast to PS2, in which plastoquinone (PQ) is doubly reduced to plastoquinol (PQH(2)) as the terminal electron acceptor. We purified PS1 particles from the menD1 mutant of Chlamydomonas reinhardtii that cannot synthesize PhQ, resulting in replacement of PhQ by PQ in the quinone-binding pocket. The magnitude of the stable flash-induced P(700)(+) signal of menD1 PS1, but not wild-type PS1, decreased during a train of laser flashes, as it was replaced by a ~30 ns back-reaction from the preceding radical pair (P(700)(+)A(0)(-)). We show that this process of photoinactivation is due to double reduction of PQ in the menD1 PS1 and have characterized the process. It is accelerated at lower pH, consistent with a rate-limiting protonation step. Moreover, a point mutation (PsaA-L722T) in the PhQ(A) site that accelerates ET to F(X) ~2-fold, likely by weakening the sole H-bond to PhQ(A), also accelerates the photoinactivation process. The addition of exogenous PhQ can restore activity to photoinactivated PS1 and confer resistance to further photoinactivation. This process also occurs with PS1 purified from the menB PhQ biosynthesis mutant of Synechocystis PCC 6803, demonstrating that it is a general phenomenon in both prokaryotic and eukaryotic PS1.  相似文献   

14.
Electrostatic calculations have predicted that the partial negative charge associated with D575PsaB plays a significant role in modulating the midpoint potentials of the A1A and A1B phylloquinones in photosystem I. To test this prediction, the side chain of residue 575PsaB was changed from negatively charged (D) to neutral (A) and to positively charged (K). D566PsaB, which is located at a considerable distance from either A1A or A1B, and should affect primarily the midpoint potential of FX, was similarly changed. In the 575PsaB variants, the rate of electron transfer from A1A to FX is observed to decrease slightly according to the sequence D/A/K. In the 566PsaB variants, the opposite effect of a slight increase in the rate is observed according to the same sequence D/A/K. These results are consistent with the expectation that changing these residues will shift the midpoint potentials of nearby cofactors to more positive values and that the magnitude of this shift will depend on the distance between the cofactors and the residues being changed. Thus, the midpoint potentials of A1A and A1B should experience a larger shift than will FX in the 575PsaB variants, while FX should experience a larger shift than will either A1A or A1B in the 566PsaB variants. As a result, the driving energy for electron transfer from A1A and A1B to FX will be decreased in the former and increased in the latter. This rationalization of the changes in kinetics is compared with the results of electrostatic calculations. While the altered amino acids shift the midpoint potentials of A1A, A1B, and FX by different amounts, the difference in the shifts between A1A and FX or between A1B and FX is small so that the overall effect on the electron transfer rate between A1A and FX or between A1B and FX is predicted to be small. These conclusions are borne out by experiment.  相似文献   

15.
The core of photosystem I (PS1) is composed of the two related integral membrane polypeptides, PsaA and PsaB, which bind two symmetrical branches of cofactors, each consisting of two chlorophylls and a phylloquinone, that potentially link the primary electron donor and the tertiary acceptor. In an effort to identify amino acid residues near the phylloquinone binding sites, all tryptophans and histidines that are conserved between PsaA and PsaB in the region of the 10th and 11th transmembrane alpha-helices were mutated in Chlamydomonas reinhardtii. The mutant PS1 reaction centers appear to assemble normally and possess photochemical activity. An electron paramagnetic resonance (EPR) signal attributed to the phylloquinone anion radical (A(1)(-)) can be observed either transiently or after illumination of reaction centers with pre-reduced iron-sulfur clusters. Mutation of PsaA-Trp(693) to Phe resulted in an inability to photo-accumulate A(1)(-), whereas mutation of the analogous tryptophan in PsaB (PsaB-Trp(673)) did not produce this effect. The PsaA-W693F mutation also produced spectral changes in the time-resolved EPR spectrum of the P(700)(+) A(1)(-) radical pair, whereas the analogous mutation in PsaB had no observable effect. These observations indicate that the A(1)(-) phylloquinone radical observed by EPR occupies the phylloquinone-binding site containing PsaA-Trp(693). However, mutation of either tryptophan accelerated charge recombination from the terminal Fe-S clusters.  相似文献   

16.
At the lumenal side of photosystem I (PSI) in cyanobacteria, algae, and vascular plants, proper recognition and binding of the donor proteins plastocyanin (pc) and cytochrome (cyt) c(6) are crucial to allow subsequent efficient electron transfer to the photooxidized primary donor. To characterize the surface regions of PSI needed for the correct binding of both donors, loop j of PsaB of Chlamydomonas reinhardtii was modified using site-directed mutagenesis and chloroplast transformation. Mutant strains D624K, E613K/D624K, E613K/W627F, and D624K/W627F accumulated <20% of PSI as compared with wild type and were only able to grow photoautotrophically at low light intensities. Mutant strains E613N, E613K, and W627F accumulated >50% of PSI as compared with wild type. This was sufficient to isolate the altered PSI and perform a detailed analysis of the electron transfer between the modified PSI and the two algal donors using flash-induced spectroscopy. Such an analysis indicated that residue Glu(613) of PsaB has two functions: (i) it is crucial for an improved unbinding of the two donors from PSI, and (ii) it orientates the positively charged N-terminal domain of PsaF in a way that allows efficient binding of pc or cyt c(6) to PSI. Mutation of Trp(627) to Phe completely abolishes the formation of an intermolecular electron transfer complex between pc and PSI and also drastically diminishes the rate of electron transfer between the donor and PSI. This mutation also hinders binding and electron transfer between the altered PSI and cyt c(6). It causes a 10-fold increase of the half-time of electron transfer within the intermolecular complex of cyt c(6) and PSI. These data strongly suggest that Trp(627) is a key residue of the recognition site formed by the core of PSI for binding and electron transfer between the two soluble electron donors and the photosystem.  相似文献   

17.
The PsaC subunit of photosystem I (PS I) binds two [4Fe-4S] clusters, F(A) and F(B), functioning as electron carriers between F(X) and soluble ferredoxin. To resolve the issue whether F(A) or F(B) is proximal to F(X), we used single-turnover flashes to promote step-by-step electron transfer between electron carriers in control (both F(A) and F(B) present) and HgCl2-treated (F(B)-less) PS I complexes from Synechococcus sp. PCC 6301 and analyzed the kinetics of P700+ reduction by monitoring the absorbance changes at 832 nm in the presence of a fast electron donor (phenazine methosulfate (PMS)). In control PS I complexes exogenously added ferredoxin, or flavodoxin could be photoreduced on each flash, thus allowing P700+ to be reduced from PMS. In F(B)-less complexes, both in the presence and in the absence of ferredoxin or flavodoxin, P700+ was reduced from PMS only on the first flash and was reduced from F(X)- on the following flashes, indicating lack of electron transfer to ferredoxin or flavodoxin. In the F(B)-less complexes, a normal level of P700 photooxidation was detected accompanied by a high yield of charge recombination between P700+ and F(A)- in the presence of a slow donor, 2,6-dichlorophenol-indophenol. This recombination remained the only pathway of F(A)- reoxidation in the presence of added ferredoxin, consistent with the lack of forward electron transfer. F(A)- could be reoxidized by methyl viologen in F(B)-less PS I complexes, although at a concentration two orders of magnitude higher than is required in wild-type PS I complexes, thus implying the presence of a diffusion barrier. The inhibition of electron transfer to ferredoxin and flavodoxin was completely reversed after reconstituting the F(B) cluster. Using rate versus distance estimates for electron transfer rates from F(X) to ferredoxin for two possible orientations of PsaC, we conclude that the kinetic data are best compatible with PsaC being oriented with F(A) as the cluster proximal to F(X) and F(B) as the distal cluster that donates electrons to ferredoxin.  相似文献   

18.
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A1, the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre FX and the phylloquinone bound to either the PsaA (A1A) or the PsaB (A1B) subunit of the reaction centre and the equilibrium between the iron-sulfur centres FA and FB. The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A1) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre FX. A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A1B quinone and slightly endergonic, in the case of the A1A quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A0 on both electron transfer branches and the reduction of FA by FX.  相似文献   

19.
The decay of the light-induced spin-correlated radical pair [P700+ A1-] and the associated electron spin echo envelope modulation (ESEEM) have been studied in either thylakoid membranes, cellular membranes, or purified photosystem I prepared from the wild-type strains of Synechocystis sp. PCC 6803, Chlamydomonas reinhardtii, and Spinaceae oleracea. The decay of the spin-correlated radical pair is described in the wild-type membrane by two exponential components with lifetimes of 2-4 and 16-25 micros. The proportions of the two components can be altered by preillumination of the membranes in the presence of reductant at temperatures lower than 220 K, which leads to the complete reduction of the iron-sulfur electron acceptors F(A), F(B), and F(X) and partial photoaccumulation of the reduced quinone electron acceptor A1A-. The "out-of-phase" (OOP) ESEEM attributed to the [P700+ A1-] radical pair has been investigated in the three species as a function of the preillumination treatment. Values of the dipolar (D) and the exchange (J) interactions were extracted by time-domain fitting of the OOP-ESEEM. The results obtained in the wild-type systems are compared with two site-directed mutants of C. reinhardtii [Santabarbara et al. (2005) Biochemistry 44, 2119-2128], in which the spin-polarized signal on either the PsaA- or PsaB-bound electron transfer pathway is suppressed so that the radical pair formed on each electron transfer branch could be monitored selectively. This comparison indicates that when all of the iron-sulfur centers are oxidized, only the echo modulation associated with the A branch [P700+ A1A-] radical pair is observed. The reduction of the iron-sulfur clusters and the quinone A1 by preillumination treatment induces a shift in the ESEEM frequency. In all of the systems investigated this observation can be interpreted in terms of different proportions of the signal associated with the [P700+ A1A-] and [P700+ A1B-] radical pairs, suggesting that bidirectionality of electron transfer in photosystem I is a common feature of all species rather than being confined to green algae.  相似文献   

20.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号