首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interrelated mechanisms in reward and learning   总被引:3,自引:1,他引:2  
This brief review is focused on recent work in our laboratory, in which we assayed nicotine-induced neurotransmitter changes, comparing it to changes induced by other compounds and examined the receptor systems and their interactions that mediate the changes. The primary aim of our studies is to examine the role of neurotransmitter changes in reward and learning processes. We find that these processes are interlinked and interact in that reward-addiction mechanisms include processes of learning and learning-memory mechanisms include processes of reward. In spite being interlinked, the two processes have different functions and distinct properties and our long-term aim is to identify factors that control these processes and the differences among the processes. Here, we discuss reward processes, which we define as changes examined after administration of nicotine, cocaine or food, each of which induces changes in neurotransmitter levels and functions in cognitive areas as well as in reward areas. The changes are regionally heterogeneous and are drug or stimulus specific. They include changes in the transmitters assayed (catecholamines, amino acids, and acetylcholine) and also in their metabolites, hence, in addition to release, uptake and metabolism are involved. Many receptors modulate the response with direct and indirect effects. The involvement of many transmitters, receptors and their interactions and the stimulus specificity of the response indicated that each function, reward and learning represents the involvement of different pattern of changes with a different stimulus, therefore, many different learning and many different reward processes are active, which allow stimulus specific responses. The complex pattern of reward-induced changes in neurotransmitters is only a part of the multiple changes observed, but one which has a crucial and controlling function.  相似文献   

2.
Food reward in the absence of taste receptor signaling   总被引:1,自引:0,他引:1  
Food palatability and hedonic value play central roles in nutrient intake. However, postingestive effects can influence food preferences independently of palatability, although the neurobiological bases of such mechanisms remain poorly understood. Of central interest is whether the same brain reward circuitry that is responsive to palatable rewards also encodes metabolic value independently of taste signaling. Here we show that trpm5-/- mice, which lack the cellular machinery required for sweet taste transduction, can develop a robust preference for sucrose solutions based solely on caloric content. Sucrose intake induced dopamine release in the ventral striatum of these sweet-blind mice, a pattern usually associated with receipt of palatable rewards. Furthermore, single neurons in this same ventral striatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs. Our findings suggest that calorie-rich nutrients can directly influence brain reward circuits that control food intake independently of palatability or functional taste transduction.  相似文献   

3.
Neural responses during anticipation of a primary taste reward   总被引:29,自引:0,他引:29  
The aim of this study was to determine the brain regions involved in anticipation of a primary taste reward and to compare these regions to those responding to the receipt of a taste reward. Using fMRI, we scanned human subjects who were presented with visual cues that signaled subsequent reinforcement with a pleasant sweet taste (1 M glucose), a moderately unpleasant salt taste (0.2 M saline), or a neutral taste. Expectation of a pleasant taste produced activation in dopaminergic midbrain, posterior dorsal amygdala, striatum, and orbitofrontal cortex (OFC). Apart from OFC, these regions were not activated by reward receipt. The findings indicate that when rewards are predictable, brain regions recruited during expectation are, in part, dissociable from areas responding to reward receipt.  相似文献   

4.
5.
6.
汤清波  马英  黄玲巧  王琛柱 《昆虫学报》2011,54(12):1433-1444
很多昆虫具有极其灵敏的味觉感受系统, 在其取食选择、 交配和产卵等过程中起重要作用。相对于昆虫的嗅觉机制, 对昆虫味觉感受机制的研究较少。传统的味觉感受研究主要集中在味觉感器外部形态、 味觉电生理和行为学上。近年来随着分子遗传学、 生物信息学和神经生物学技术的应用, 昆虫味觉的研究不断深入, 主要体现在下列两方面: (1)味觉受体方面, 通过分子生物信息学等手段获得了多种昆虫的味觉受体, 不同种昆虫之间受体数目差异较大, 不同受体之间氨基酸的相似性较低。通常, 根据味觉受体配体物质的性质可以把味觉受体分为取食抑制素受体和取食刺激素受体两大类。(2)味觉神经元的投射及味觉编码机制方面, 多个研究表明昆虫外围味觉神经元在中枢神经系统中的投射部位为咽下神经节和后脑, 但是不同性质的受体神经元投射的具体位置有所不同。本文对昆虫味觉感器和神经元的基本特征, 味觉受体的进化、 表达和功能, 味觉神经元在中枢神经系统中的投射, 味觉神经元的编码机制及味觉可塑性等进行了综述。  相似文献   

7.
Naive rats readily learned to self-administer scopolamine, a centrally active anticholinergic antimuscarinic agent, by the intravenous route; drug intake remained constant while response rates decreased with increasing unit dose ((0.005–0.02 mg/kg/infusion). Increases and decreases in scopolamine responding were elicited by pretreatment with muscarinic agonists and antagonists, respectively. An anticholinergic action at muscarinic synapses appears to be sufficient for reinforcing efficacy; such an action may mediate, in part, the addictive properties of other drugs (e.g., opiates and phencyclidine-like hallucinogens) that are known to have anticholinergic effects.  相似文献   

8.
9.
《Current biology : CB》2023,33(10):2034-2050.e8
  1. Download : Download high-res image (234KB)
  2. Download : Download full-size image
  相似文献   

10.
Sweet taste involves several distinct receptor mechanisms   总被引:2,自引:2,他引:0  
Measures of human sensitivities to various sweet compounds conductedat threshold (91 subjects, 7 sweeteners) and at suprathresholdlevels (9 subjects, 12 sweeteners) show interindividual differences.Multidimensional analysis indicates that sweet taste can berepresented in a tridimensional continuum if 12 compounds areconsidered. Results are speculatively interpreted as indirectevidence for the existence of several receptor sites cooperatingin sweet taste chemoreception.  相似文献   

11.
分化抑制因子-1(inhibitor of differentiation protein 1,Id-1)是Id转录调节蛋白家族成员之一,属于螺旋-环-螺旋蛋白超家族成员。早期对Id-1的研究认为其主要作用是负向调节正常细胞的分化。近年来研究表明,Id-1在多种肿瘤中过表达并通过多条信号通路促进肿瘤的发生,现就Id-1在肿瘤发生中的作用及其作用机制作一综述。  相似文献   

12.
去乙酰化转移酶SIRT7的作用及机制研究进展   总被引:1,自引:0,他引:1  
SIRT7是哺乳动物Sirtuins家族中的一员,定位于核仁,是一种高度特异性的H3K18Ac(组蛋白H3的乙酰化18位赖氨酸残基)去乙酰化酶。近年来的研究发现SIRT7可通过多种途径参与调控核糖体RNA转录、细胞代谢、细胞应激以及DNA损伤修复等生理过程。此外,SIRT7还与衰老、心脏疾病及脂肪肝等密切相关。特别是SIRT7在多种肿瘤如肝癌、胃癌、乳腺癌、膀胱癌、结直肠癌、胰腺癌和头颈鳞状细胞癌等发生发展中起着重要的调节作用。文中综述了SIRT7的细胞及分子生物学作用,并系统总结了其在人类疾病中的研究现状。  相似文献   

13.
This article reviews sex differences in opiate analgesic and related processes as part of a Special Issue in Hormones and Behavior. The research findings on sex differences are organized in the following manner: (a) systemic opioid analgesia across mu, delta and kappa opioid receptor subtypes and drug efficacy at their respective receptors, (b) effects of the activational and organizational roles of gonadal steroid hormones and estrus phase on systemic analgesic responses, (c) sex differences in spinal opioid analgesia, (d) sex differences in supraspinal opioid analgesia and gonadal hormone effects, (e) the contribution of genetic variance to analgesic sex differences, (f) sex differences in opioid-induced hyperalgesia, (g) sex differences in tolerance and withdrawal-dependence effects, and (h) implications for clinical therapies.  相似文献   

14.
The hormones insulin and leptin have been proposed to act in the central nervous system (CNS) as adiposity signals as part of a theoretical negative feedback loop that senses the caloric stores of an animal and orchestrates adjustments in energy balance and food intake. Much research has provided support for both the existence of such a feedback loop and the specific roles that insulin and leptin may play. Most studies have focused on hypothalamic sites, which historically are implicated in the regulation of energy balance, and on the brain stem, which is a target for neural and humoral signals relating to ingestive acts. More recent lines of research, including studies from our lab, suggest that in addition to these CNS sites, brain reward circuitry may be a target for insulin and leptin action. These studies are reviewed together here with the goals of providing a historical overview of the findings that have substantiated the originally hypothesized negative feedback model and of opening up new lines of investigation that will build on these findings and allow further refinement of the model of adiposity signal/CNS feedback loop. The understanding of how motivational circuitry and its endocrine or neuroendocrine modulation contributes to normal energy balance regulation should expand possibilities for future therapeutic approaches to obesity and may lead to important insights into mental illnesses such as substance abuse or eating disorders.  相似文献   

15.
16.
Central mechanisms of vascular headaches   总被引:1,自引:0,他引:1  
The intracranial blood vessels supplying the dura and brain are innervated by sensory afferents from the trigeminal nerve. These fibers are believed to be responsible for conveying the pain associated with vascular head pain such as migraines. This paper reviews recently published data describing the existence of neurons within the cat trigeminal nucleus and thalamus that respond to electrical stimulation of the middle meningeal artery and superior sagittal sinus. Almost all of these neurons receive convergent input from the facial skin and most of the receptive fields include the periorbital region. On the basis of their cutaneous inputs, most of the neurons are classified as nociceptive. The characteristics of these cerebrovascular-activated neurons are consistent with their role in mediating vascular head pains and with the typical referral of such pains in man to the orbital region. This paper also presents preliminary results of recordings from rat trigeminal ganglion neurons activated by electrical stimulation of the middle meningeal artery and sagittal sinus. The latencies of activation of these neurons are indicative of conduction in slowly conducting myelinated axons and in unmyelinated axons. Some of the neurons could also be activated by mechanical stimuli applied to the vessels.  相似文献   

17.
The possible role of various potential chemical mediators in the production of fever is reviewed. A major problem in this field is the very considerable conflict of evidence, let alone interpretation. On the existing evidence, it appears unlikely that monoamines, acetyl choline, or alterations in relative concentrations of sodium and calcium play any major role in the production of fever. Recent evidence makes it unlikely that prostaglandins have a direct role in this mechanism, though the involvement of other metabolites of arachidonic acid has not been excluded. It is possible that protein synthesis may play a part in the central action of leukocyte pyrogen.  相似文献   

18.
Brief anatomical, physiological and neurochemical basics of the regulation of wakefulness, slow wave (NREM) sleep and paradoxical (REM) sleep are regarded as representing by the end of the first decade of the second millennium.  相似文献   

19.
Central mechanisms of visceral pain   总被引:7,自引:0,他引:7  
Deep pain arising from muscle, joints, connective tissue, and the viscera is different in character and quality from pain arising from cutaneous structures. Deep pains, particularly visceral pain, are poorly localized, typically referred or transferred to a cutaneous site, and generally produce strong emotional and autonomic responses and tonic muscle contractions. Despite the prevalence and clinical importance of deep pains, it is only relatively recently that investigative efforts have begun to focus on the mechanisms of deep pain. The present report briefly reviews the development and use of a model of visceral pain that employs constant pressure distension of the colon and rectum as a noxious stimulus. Converging behavioral, pharmacological, and physiological evidence that colorectal distension is a valid, reliable, noxious, visceral stimulus is presented.  相似文献   

20.
Kuner R 《Nature medicine》2010,16(11):1258-1266
Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号