首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pre-T-cell receptor (pre-TCR) and TCR signals govern the development of T-lymphocytes. RhoH, a hematopoietic-specific and GTPase-deficient member of the RhoGTPase family, is required in the development of T-lymphocytes. Here we found that RhoH binds and modulates LCK, the non-receptor tyrosine kinase crucial in initiating pre-TCR and TCR signallings. In both pre-TCR and TCR signalling transduction, LCK is phosphorylated by CSK to maintain the inactive state of LCK at rest. Upon being activated, CSK phosphorylation is removed and LCK autophosphorylation leads to LCK activation and further phosphorylates ZAP70 to initiate further downstream signalling. At rest, LCK may be recruited to the plasma membrane by RhoH, which also binds CSK, resulting in LCK inactivation. Additionally, the presence of RhoH enhances the inactivation phosphorylation of LCK by CSK. RhoH was found to bind preferentially inactive LCK, indicating that, upon ligand-mediated TCR activation, LCK is dephosphorylated resulting in LCK autoactivation and its release from RhoH. Thus RhoH is a critical part of the microenvironment for maintaining the inactive state of LCK. Furthermore, we found that the reduction of RhoH levels results in LCK autoactivation and constitutive activation of the TCR pathway. Our findings indicate that RhoH is a key adapter protein that maintains LCK in the inactive state, contributing to the regulation of both pre-TCR and TCR signalling during T-cell development. The data also supports a model for ligand-independent signal transduction by pre-TCR.  相似文献   

2.
3.
4.
5.
Löwenberg M  Stahn C  Hommes DW  Buttgereit F 《Steroids》2008,73(9-10):1025-1029
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant agents. Unfortunately, they also produce serious side effects that limit their usage. This discrepancy is the driving force for the intensive search for novel GC receptor ligands with a better benefit-risk ratio as compared to conventional GCs. A better understanding of the molecular mode of GC action might result in the identification of novel drug targets. Genomic GC effects are mediated by transrepression or transactivation, the latter being largely responsible for GC side effects. We here discuss novel GC receptor ligands, such as selective glucocorticoid receptor agonists (SEGRAs), which might optimize genomic GC effects as they preferentially induce transrepression with little or no transactivating activity. In addition to genomic GC effects, GCs also produce rapid genomic-independent activities, termed nongenomic, and we here review the possible implications of a recently reported mechanism underlying nongenomic GC-induced immunosuppression in T cells. It was shown that the synthetic GC dexamethasone targets membrane-bound GC receptors leading to impaired T cell receptor signaling. As a consequence, membrane-linked GC receptors might be a potential candidate target for GC therapy. The ultimate goal is to convert these molecular insights into new GC receptor modulators with an improved therapeutic index.  相似文献   

6.
P S Kabouridis  A I Magee    S C Ley 《The EMBO journal》1997,16(16):4983-4998
LCK is a non-receptor protein tyrosine kinase required for signal transduction via the T-cell antigen receptor (TCR). LCK N-terminus is S-acylated on Cys3 and Cys5, in addition to its myristoylation on Gly2. Here the role of S-acylation in LCK function was examined. Transient transfection of COS-18 cells, which express a CD8-zeta chimera on their surface, revealed that LCK mutants that were singly S-acylated were able to target to the plasma membrane and to phosphorylate CD8-zeta. A non-S-acylated LCK mutant did not target to the plasma membrane and failed to phosphorylate CD8-zeta, although it was catalytically active. Fusion of non-S-acylated LCK to a transmembrane protein, CD16:7, allowed its plasma membrane targeting and also phosphorylation of CD8-zeta when expressed in COS-18 cells. Thus S-acylation targets LCK to the plasma membrane where it can interact with the TCR. When expressed in LCK-negative JCam-1.6 T cells, delocalized, non-S-acylated LCK was completely non-functional. Singly S-acylated LCK mutants, which were expressed in part at the plasma membrane, efficiently reconstituted the induced association of phospho-zeta with ZAP-70 and intracellular Ca2+ fluxes triggered by the TCR. Induction of the late signalling proteins, CD69 and NFAT, was also reconstituted, although at reduced levels. The transmembrane LCK chimera also supported the induction of tyrosine phosphorylation and Ca2+ flux by the TCR in JCam-1.6 cells. However, induction of ERK MAP kinase was reduced and the chimera was incapable of reconstituting induced CD69 or NFAT expression. These data indicate that LCK must be attached to the plasma membrane via dual acylation of its N-terminus to function properly in TCR signalling.  相似文献   

7.
CD8 cells may contribute towards an autoimmune process in COPD. Down regulation of T cell receptor (TCR) signalling molecules occurs in autoimmune diseases with consequent T cell dysfunction. We hypothesise that TCR signalling is abnormal in COPD pulmonary CD8 cells. Micro-array gene expression analysis of blood and pulmonary COPD CD8 samples was performed and compared to pulmonary CD8 cells from smoker controls (S). We focused on the TCR signalling pathway, with validation of key findings using polymerase chain reaction and immunofluorescence. TCR signalling molecules in COPD pulmonary CD8 cells were down regulated compared to blood CD8 cells (CD247: fold change (FC) −2.43, Q = 0.001; LCK: FC −2.25, Q = 0.01). Micro-array analysis revealed no significant differences between COPD and S pulmonary CD8 cells. However, PCR revealed significantly lower gene expression levels of CD247 (FC −1.79, p = 0.04) and LCK (FC −1.77, p = 0.01) in COPD compared to S pulmonary CD8 cells. CD247 down regulation in COPD CD8 cells was confirmed by immunofluorescent staining of bronchoalveolar lavage cells: Significantly fewer COPD CD8 cells co-expressed CD247 compared to healthy non-smoker CD8 cells (mean 88.9 vs 75.2%, p<0.05) There is down regulation of TCR signalling molecules in COPD pulmonary CD8 cells. This may cause T cell dysfunction.  相似文献   

8.
THEMIS is critical for conventional T‐cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr‐phosphorylation‐independent fashion. Rather, SHP1 and THEMIS engage with the N‐SH3 and C‐SH3 domains of GRB2, respectively, a configuration that allows GRB2‐SH2 to recruit the complex onto LAT. Consistent with THEMIS‐mediated recruitment of SHP to the TCR signalosome, THEMIS knock‐down increased TCR‐induced CD3‐ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock‐down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK‐mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T‐cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T‐cell development and differentiation.  相似文献   

9.
Glucocorticoids (GCs) represent an important component of modern treatment regimens for fludarabine-refractory or TP53-defective chronic lymphocytic leukemia (CLL). However, GC therapy is not effective in all patients. The molecular mechanisms responsible for GC-induced apoptosis and resistance were therefore investigated in primary malignant cells obtained from a cohort of 46 patients with CLL. Dexamethasone-induced apoptosis was unaffected by p53 dysfunction and more pronounced in cases with unmutated IGHV genes. Cross-resistance was observed between dexamethasone and other GCs but not fludarabine, indicating non-identical resistance mechanisms. GC treatment resulted in the upregulation of Bim mRNA and protein, but to comparable levels in both GC-resistant and sensitive cells. Pre-incubation with Bim siRNAs reduced GC-induced upregulation of Bim protein and conferred resistance to GC-induced apoptosis in previously GC-sensitive cells. GC-induced upregulation of Bim was associated with the activation of Bax and Bak in GC-sensitive but not -resistant CLL samples. Co-immunoprecipitation experiments showed that Bim does not interact directly with Bax or Bak, but is almost exclusively bound to Bcl-2 regardless of GC treatment. Taken together, these findings suggest that the GC-induced killing of CLL cells results from the indirect activation of Bax and Bak by upregulated Bim/Bcl-2 complexes, and that GC resistance results from the failure of such activation to occur.  相似文献   

10.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

11.
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)(2)-green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B-induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.  相似文献   

12.
13.
Parathyroid hormone-related protein (PTHrP) has been shown to have anabolic effects in women with postmenopausal osteoporosis. PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The receptor responsible for the effects of PTHrP is the common PTH/PTHrP receptor (PTH1R). Glucocorticoids (GC) are commonly used as drugs to treat inflammatory diseases. Long-term GC treatments are often associated with bone loss which can lead to GC-induced osteoporosis. The aim of this work was to study the effects of the glucocorticoid dexamethasone (Dex) on the expression of PTHrP and PTH1R in adult human mesenchymal stem cells, the progenitor cells of osteoblasts.Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The expression of PTHrP and PTH1R mRNA was assayed by real-time qPCR. The PTHrP release into the culture media was measured by an immunoradiometric assay.Treatment with Dex (10 nM) resulted in an 80% drop in the PTHrP release within 6 h. A 24 h Dex treatment also reduced the expression of PTHrP mRNA by up to 90%. The expression of PTH1R receptor mRNA was simultaneously increased up to 20-fold by 10 nM Dex. The effects of Dex on PTHrP and PTH1R were dose-dependent and experiments with the GC-receptor antagonist mifepristone showed an involvement of GC-receptors in these effects. In addition to the Dex-induced effects on PTHrP and PTH1R, Dex also increased mineralization and the expression of the osteoblast markers Runx2 and alkaline phosphatase. In our studies, we show that dexamethasone decreases the expression of PTHrP and increases the expression of the PTH1R receptor. This could have an impact on PTHrP-mediated anabolic actions on bone and could also affect the responsiveness of circulating PTH. The results indicate that glucocorticoids affect the signalling pathway of PTHrP by regulating both PTHrP and PTH1R expression and these mechanisms could be involved in glucocorticoid-induced osteoporosis.  相似文献   

14.
Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive agents that act on a variety of immune cells, including monocytes and macrophages. However, the exact cellular mechanisms underlying this anti-inflammatory capacity are still unknown. In our study, we determined the induction of apoptosis by GC in human monocytes. Peripheral blood monocytes were isolated by density centrifugation methods with a purity of >90% and were cultured in RPMI 1640 medium. Monocyte apoptosis was determined by four independent methods, including annexin-V staining, TUNEL, DNA-laddering, and typical morphology by means of transmission electron microscopy. TNF-alpha and IL-1beta were measured by ELISA. GC receptor was blocked with mifepristone. Caspase 3 was inhibited with caspase-3 inhibitor (DEVD-CHO). Stimulation with different GC at therapeutic concentrations resulted in monocyte apoptosis in a time- and dose-dependent manner. Necrosis was excluded by propidium iodide staining. Proinflammatory cytokines such as IL-1beta and TNF-alpha were down-regulated by GC treatment. Continuous treatment of monocytes with IL-1beta, but not with TNF-alpha, could almost completely prevent GC-induced cell death. The addition of mifepristone or caspase-3 inhibitor could partially abrogate GC-induced apoptosis as well as GC-induced inhibition of IL-1beta. This is the first study to demonstrate induction of apoptosis by GC in human monocytes. GC-induced monocyte apoptosis may be partially mediated through effects on IL-1beta production. It is conceivable that GC exert their anti-inflammatory capacity in various diseases, at least in part, by the induction of apoptosis in monocytes.  相似文献   

15.
16.
17.
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.  相似文献   

18.
The widely expressed transmembrane molecule CD46 is the complement regulatory receptor for C3b as well as the receptor for several pathogens. Beside its binding functions, CD46 is also able to transduce signals. We showed that CD46 aggregation on human T cells induces p120CBL and linker for activation of T cells (LAT) phosphorylation. These two proteins are adaptor proteins known to regulate TCR signaling. p120CBL is a complex adaptor protein involved in negatively regulating signaling events, whereas LAT is a transmembrane adaptor protein found in glycolipid-enriched microdomains essential for T cell activation. Therefore, we investigated if a CD46/TCR costimulation would affect T cell activation. Indeed, CD46/CD3 costimulation strongly promotes T cell proliferation. Therefore, we propose that CD46 acts as a potent costimulatory molecule for human T cells.  相似文献   

19.
20.
The glucocorticoid receptor exists in the cytoplasm of hormone-untreated cells as a complex with the 90-kDa heat shock protein (HSP90). Glucocorticoids induce dissociation of the glucocorticoid binding protein from HSP90 and translocation of the receptor to the nucleus. HSP90 binds to actin filaments, and calmodulin or tropomyosin inhibits the binding. We present here evidence that the HSP90-containing glucocorticoid receptor complexes (8 S receptor) bind to filamentous actin in vitro while the HSP90-free form of the receptor does not. The binding was detectable for both the crude cytosolic fractions and the partially purified 8 S glucocorticoid receptor. Purified HSP90 or tropomyosin completely abolished the binding. Calmodulin also inhibited the binding in a Ca(2+)-dependent manner. From these results, we conclude that the glucocorticoid receptor complex is able to bind actin filaments via the HSP90 moiety. The binding may provide an anchoring mechanism for the glucocorticoid receptor in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号