首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigated antioxidant and antitumor-promoting activities of major phenolic phytochemicals of apples. The contents of each antioxidant in Empire apples was quantified and their contributions to total antioxidant activity of apples were determined using assay for inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced superoxide radical generation in cell culture model and expressed in vitamin C equivalent antioxidant capacity (VCEAC). The estimated contribution of major phenolics and vitamin C to total anitoxidant capacity of 100 g fresh Empire apples is as follows: quercetin (60.05 VCEAC) > chlorogenic acid (12.32) > phloretin (7.41) > procyanidin B2 (7.22) > vitamin C (6.61) > epicatechin (5.10) in superoxide radical scavenging assay. Recent reports suggest that the mechanism of carcinogenic process of hydrogen peroxide (H2O2) may be associated with the inhibition of gap-junctional intercellular communication (GJIC), which is involved in tumor promotion process. Apple extracts showed the protective effects against the inhibition of GJIC by H2O2 in a dose-dependent manner. Quercetin exerted the strongest protective effects among major antioxidants in apples on H2O2-induced inhibition of GJIC, following epicatechin, procyanidin B2, and vitamin C, while chlorogenic acid and phloretin had no effects. Our results indicate that cancer chemopreventive activity of apples is associated with the combined antioxidant capacity and antitumor-promoting activities of diverse antioxidants.  相似文献   

2.
Lipid rafts are specific microdomains of plasma membrane which are enriched in cholesterol and sphingolipids. These domains seem to favour the interactions of particular proteins and the regulation of signalling pathways in the cells. Recent data have shown that among the proteins, which are preferentially localized in lipid rafts, are connexins that are the structural proteins of gap junctions. Since gap junctional intercellular communication is involved in various cellular processes and pathologies such as cancer, we were interested to review the various observations concerning this specific localization of connexins in lipid rafts and its consequences on gap junctional intercellular communication capacity. In particular, we will focus our discussion on the role of the lipid raft-connexin connection in cancer progression. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

3.
Direct intercellular communication through gap junction channels is involved in the maintenance of tissue homeostasis and suppression of carcinogenesis. Gap-junctional communication is often altered in tumor cells but it can also be modulated in response to tumor promotors or inflammatory signals. In order to evaluate the effect of nongenotoxic compounds, suggested to be involved in tumor promotion, on gap junctional intercellular communication in the liver, we have developed a direct dye transfer method. The fluorescent dye Alexa Fluor 488 was iontophoretically injected into hepatocytes of freshly prepared, precision-cut mouse liver slices (250 microm). The area of dye spreading was monitored and quantified by microscopy. Comparison of dye spreading in connexin-32-deficient versus wild-type liver revealed a 96% decrease in connexin-32-deficient tissue. Induction of an acute phase response in connexin-32-deficient mice by intraperitoneal injection of lipopolysaccharide increased dye coupling by 33%, probably due to upregulation of connexin-26-containing gap junction channels.  相似文献   

4.
Since reactive oxygen species (ROS) play a key role in carcinogenesis, many studies have focused on the chemopreventive activities of naturally occurring antioxidants. However, the possibility that different antioxidants in food exert opposing effects on carcinogenesis has not been adequately investigated. Gap-junction intercellular communication (GJIC), which is strongly related to carcinogenesis (particularly the tumor promotion stage), may be a suitable model for investigating the tumor-promoting and antitumor-promoting effects of phytochemicals. The present study investigated the possible combined effects of resveratrol and gallic acid (GA), which are major antioxidants in red wine, on GJIC in WB-F344 rat liver epithelial (RLE) cells. GA at 100 microM, but not resveratrol, inhibited GJIC and generated hydrogen peroxide. The GA-induced inhibition of GJIC was recovered by resveratrol, but only partially recovered by catalase. Resveratrol did not attenuate GA-induced generation of hydrogen peroxide, but it did block GA-induced phosphorylation of connexin 43 (Cx43), a key modulator of GJIC. Furthermore, resveratrol down-regulated GA-induced phosphorylation of extracellular signal-regulated kinase (ERK)1/2, one of the critical regulators of Cx43. However, catalase partially blocked the GA-induced phosphorylation of Cx43 and ERK1/2. Collectively, these findings suggest that the combined effects of red wine phenolic phytochemicals on GJIC and antioxidants differ in ROS-mediated carcinogenesis depending on their dosages and structures.  相似文献   

5.
In this study, the effects of parasympathectomy and cholinergic agonists on gap-junctional intercellular communication and salivary secretion were investigated to clarify the involvement of salivary secretion in delayed uncoupling between acinar cells of rat submandibular glands. Gap-junctional intercellular communication was monitored as dye-coupling in the acinar cells of isolated acini by the transfer of Lucifer Yellow CH. Parasympathectomy induced dye-uncoupling in the acinar cells isolated from denervated salivary glands 12 hr after parasympathectomy-induced salivary secretion. Intraperitoneal application of carbachol (CCh), acetylcholine, pilocarpine, but not isoproterenol, stimulated salivary secretion, and then induced dye-uncoupling in the acinar cells 12 hr later. Atropine suppressed both the salivary secretion and delayed dye-uncoupling induced by parasympathectomy and CCh, when atropine was applied intraperitoneally before the induction of salivary secretion. However, atropine did not suppress the delayed dye-uncoupling by intraperitoneal application of CCh, when atropine was injected after the cessation of CCh-induced secretion. These results suggest that delayed inhibition of gap-junctional intercellular communication by parasympathectomy and cholinergic agonists in rat submandibular glands might be related to the change of secretory function after salivary secretion.  相似文献   

6.
A new hydrophobic platinum(IV) complex, LA-12, a very efficient anticancer drug lacking cross-resistance with cisplatin (CDDP), is now being tested in clinical trials. Here we investigated the apoptogenic activity of LA-12 and its effect on gap-junctional intercellular communication (GJIC) in the rat liver epithelial cell line WB-F344. LA-12 induced apoptosis much more efficiently than did CDDP due to a combination of rapid penetration into the cell and attack on DNA, leading to fast activation of p53 and caspase-3. Exposure of WB-F344 cells to LA-12 led to rapid induction of the time- and dose-dependent decrease in GJIC. On the molecular level, loss of GJIC induced by LA-12 was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated by the use of inhibitors of ERK activation. Inhibition of GJIC was linked to rapid hyperphosphorylation of connexin-43 and disappearance of connexon clusters from membranes, which was not observed in the case of CDDP.  相似文献   

7.
Synapse is the most common and generally accepted structural basis for the interaction between neurons. It provides a "one-to-one" communication system between neurons. However, there is another possibility for interneuronal communication: when one neuron communicates with many others without making synaptic contact. In the past few years neurochemical, morphological and pharmacological evidence has been obtained that some neurotransmitters may be released from non-synaptic sites, for diffusion to target cells more distant than those seen in conventional synaptic transmission. The non-synaptic interneuronal communication between neurons plays a physiological role in the presynaptic modulation of chemical neurotransmission. This would be a transitional form between the classical neurotransmission and the broadcasting of neuroendocrine secretion.  相似文献   

8.
In order to study the effects of an activated H-ras-1 oncogene on gap-junctional intercellular communication, we introduced the EJ/T24 H-ras-1 oncogene into cells of the epithelial Clone 9-3 cell line. Gap-junctional intercellular communication was significantly reduced in H-ras-1-transformed Clone 9-3 derivatives; this result shows that transformation by the activated H-ras-1 oncogene can inhibit gap-junctional intercellular communication. We postulate that the activated H-ras-1 oncogene product could mediate this effect through a change in the phosphorylation of the major gap-junction protein.  相似文献   

9.
10.
Intercellular gap-junctional communication was measured using metabolic co-operation in co-cultures of argininosuccinate synthetase-deficient and argininosuccinate lyase-deficient human fibroblasts. 18-alpha-glycyrrhetinic acid (AGA) was found to inhibit communication by more than 95% at concentrations as low as 2 microM. Concentrations up to 100 microM were not cytotoxic over a period of 2 hours. Communication inhibition was of rapid onset and was readily reversible. Communication remained continuously yet reversibly blocked in cells cultured in the presence of AGA for 20 days. The related compounds 18-beta-glycyrrhetinic acid and carbenoxolone also caused communication inhibition. The effect is probably not mediated via mineralocorticoid or glucocorticoid receptors since aldosterone and glucocorticoids had no effect on communication. AGA thus has properties of a useful inhibitor in the study of intercellular junctional communication.  相似文献   

11.
In the present study, we have analyzed the direct effects of cytokines, which mediate the acute-phase response in liver, on connexin expression and gap-junctional intercellular communication in immortalized MHSV12 mouse hepatocytes. When these cells were stimulated for 24 h with interleukin 1 and interleukin 6, the amount of connexin26 (Cx26) mRNA increased together with β?fibrinogen mRNA, as expected for this positive acute-phase gene. In contrast, connexin32 (Cx32) mRNA expression was not affected under these conditions. Indirect immunfluorescence revealed a drastic decrease in Cx32 signals, whereas slightly more Cx26 signals were found. Stronger stimulation with interleukin 1 and tumor necrosis factor α gave a dose-dependent increase in steady state levels of Cx26 and β-fibrinogen mRNA, but no further change in Cx32 mRNA level was seen. However, when Cx32 protein was analyzed on immunoblots, we found a 5-fold decrease in expression even at low cytokine doses that did not affect Cx32 mRNA expression. Under these conditions, cell to cell transfer of Lucifer yellow, microinjected into immortalized hepatocytes, was decreased by 70%, suggesting that intercellular communication through Cx32 channels was partially inhibited earlier than other genetic alterations characteristic of the acute-phase response. Thus, the major hepatic gap junction protein was largely downregulated at the beginning of the experimental inflammatory reaction, but about 30% of gap-junctional intercellular communication was maintained. This suggests that, during the acute-phase response, the second hepatic Cx26 protein may compensate in part for the downregulation of the Cx32 protein.  相似文献   

12.
Our previous report has shown that Irsogladine maleate (IM) counters and obviates the reduction in gap junction intercellular communication (GJIC) and the increase in IL-8 levels, respectively, induced by outer membrane protein 29 from Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) in cultured human gingival epithelial cells (HGEC). In addition, IM suppresses the increase in the secretion of IL-8 caused by whole live A. actinomycetemcomitans. These findings implicate the modulation of IL-8 levels by IM in abolishment of the reduction of GJIC in HGEC. Tight junctions are also responsible for cell-cell communication. Zonula occludens protein-1 (ZO-1) is a major tight junction protein. To investigate the regulatory mechanism of intercellular communication mediated by IM, in the present study, we focused on the involvement of IL-8 in A. actinomycetemcomitans-induced change in GJIC and ZO-1 expression in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in levels of Connexin (CX) 43, suggesting that it could abolish the A. actinomycetemcomitans-induced reduction in GJIC in HGEC. CXCR-1 is a receptor of IL-8. The simultaneous addition of A. actinomycetemcomitans and anti-CXCR-1 antibody also abrogated the repression of GJIC and CX43 expression by A. actinomycetemcomitans in HGEC, although the anti-CXCR-1 antibody was less effective than IM. IM inhibited the IL-8-induced reduction in CX43 levels and GJIC in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in the expression of ZO-1, although anti-CXCR-1 antibody did not influence the decrease in ZO-1 mRNA levels caused by A. actinomycetemcomitans. Furthermore, IL-8 had little effect on the mRNA levels of ZO-1. These findings suggest that IL-8 mediates the A. actinomycetemcomitans-induced reduction of GJIC and CX43 expression in HGEC. The regulation of IL-8 levels by IM in HGEC is partially involved in abrogation of the reduction of GJIC and CX43 expression by A. actinomycetemcomitans. Furthermore, the regulatory effect of IM on the expression of CX43 and ZO-1 is different.  相似文献   

13.
The effect of 30.16 GHz millimeter wave (MMW) exposure at 1.0 and 3.5 mW/cm2 on gap junction intercellular communication (GJIC) was studied in cultured HaCaT keratinocytes, using the fluorescence recovery after photobleaching (FRAP) technique and laser confocal scanning microscopy to follow the intracellular movement of 5,6-carboxyfluorescein diacetate dye. While MMW exposure alone for 1 h at either 1.0 or 3.5 mW/cm2 did not affect GJIC, MMW exposure in combination with 5 ng/ml TPA treatment reversed TPA induced suppression of GJIC. Exposure at 1.0 mW/cm2 resulted in a partial reversal, and exposure at 3.5 mW/cm2 resulted in essentially full reversal of the TPA suppression.  相似文献   

14.
A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular calcium waves triggered in astrocytes by mechanical stimulation was also increased in cocultures. This facilitation depends on the age and number of neurons, indicating that the state of neuronal differentiation and neuron density constitute two crucial factors of this interaction. The effects of neurons on astrocytic communication and Cx43 expression were reversed completely after neurotoxic treatments. Moreover, the neuronal facilitation of glial coupling was suppressed, without change in Cx43 expression, after prolonged pharmacological treatments that prevented spontaneous synaptic activity. Altogether, these results demonstrate that neurons exert multiple and differential controls on astrocytic gap-junctional communication. Since astrocytes have been shown to facilitate synaptic efficacy, our findings suggest that neuronal and astrocytic networks interact actively through mutual setting of their respective modes of communication.  相似文献   

15.
Gap junction intercellular communication and cell–cell adhesion are essential for maintaining a normal cellular phenotype, including the control of growth and proliferation. Loss of either cell–cell adhesion or communication is common in cancers, while restoration of function is associated with tumor suppression. Protein kinase C (PKC) isozymes regulate a broad spectrum of cellular functions including growth and proliferation, and their overexpression has been correlated with carcinogenesis. Consequently, PKC inhibitors are currently undergoing clinical trials as an anti-cancer agents although the precise cellular alterations induced by PKC inhibitors remain to be elucidated. In the current study, the effects of PKC inhibitors on cell interactions were investigated using human neuroblastoma (IMR32, SKNMC, and SHSY-5Y) cell lines. An analysis of intercellular communication revealed an increase in gap junctional coupling with PKC inhibition. The observed increase in coupling was not associated with a change in Connexin43 distribution or an alteration of phosphorylation status of the protein. There was also an increase in cell–cell adhesion with PKC inhibitor treatment as indicated by a cell aggregation assay. Therefore, the growth suppressive abilities of PKC inhibition on tumors may be due to the cancer suppressive effects of increased gap junction intercellular communication and cell–cell adhesion.  相似文献   

16.
17.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

18.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

19.
20.
Cell junctions and intercellular communication   总被引:1,自引:0,他引:1  
Summary We have compared intercellular communication in normal and regenerating rat liver. Gap junctions are greatly reduced in size and numbers 29 to 35 hr after hepatectomy, but we still find some 90% of hepatocytes coupled by electrophysiological criteria. The spread of dyes such as carboxyfluorescein however is very limited in the regenerating organs as compared to the situation in the controls. We show how the apparent discrepancies between morphological and physiological data can be reconciled. We also present a summary of preliminary findings on the biosynthesis of gap junction protein and some of the conclusions one can draw from the sequence of 58 amino acids at the amino terminal of the protein. Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980. The original research described was supported by Grants GM 06965 and RR 07003 from the National Institute of Health, and funds from the North-west Area Foundation. David Meyer and Barbara Yancey were the recipients of NIH postdoctoral fellowships (NS 06240 and AM05700). This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号