共查询到20条相似文献,搜索用时 0 毫秒
1.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Paul J. Gresch Alan F. Sved Michael J. Zigmond Janet M. Finlay 《Journal of neurochemistry》1995,65(1):111-116
Abstract: Noradrenergic and dopaminergic projections converge in the medial prefrontal cortex and there is evidence of an interaction between dopamine (DA) and norepinephrine (NE) terminals in this region. We have examined the influence of drugs known to alter extracellular NE on extracellular NE and DA in medial prefrontal cortex using in vivo microdialysis. Local application of the NE uptake inhibitor desipramine (1.0 µM) delivered through a microdialysis probe increased extracellular DA (+149%) as well as NE (+201%) in medial prefrontal cortex. Furthermore, desipramine potentiated the tail shock-induced increase in both extracellular DA (stress alone, +64%; stress + desipramine, +584%) and NE (stress alone, +55%; stress + desipramine, +443%). In contrast, local application of desipramine did not affect extracellular DA in striatum, indicating that this drug does not influence DA efflux directly. Local application of the α2-adrenoceptor antagonist idazoxan (0.1 or 5.0 mM) increased extracellular NE and DA in medial prefrontal cortex. Conversely, the α2-adrenoceptor agonist clonidine (0.2 mg/kg; i.p.) decreased extracellular NE and DA in medial prefrontal cortex. These results support the hypothesis that NE terminals in medial prefrontal cortex regulate extracellular DA in this region. This regulation may be achieved by mechanisms involving an action of NE on receptors that regulate DA release (heteroreceptor regulation) and/or transport of DA into noradrenergic terminals (heterotransporter regulation). 相似文献
3.
Umino Asami Iwama Hisayuki Umino Masakazu Shimazu Dai Kiuchi Yuji Nishikawa Toru 《Neurochemical research》2022,47(9):2728-2740
Neurochemical Research - d-Serine has been shown to play an important role in the expression and control of a variety of brain functions by acting as the endogenous coagonist for the... 相似文献
4.
Saulskaya N. B. Burmakina M. A. Trofimova N. A. 《Journal of Evolutionary Biochemistry and Physiology》2022,58(2):500-507
Journal of Evolutionary Biochemistry and Physiology - Nitric oxide (NO) and serotonin play an important role in the functioning of the medial prefrontal cortex, but their interaction has been... 相似文献
5.
Stress-Induced Sensitization of Dopamine and Norepinephrine Efflux in Medial Prefrontal Cortex of the Rat 总被引:7,自引:1,他引:7
Paul J. Gresch †Alan F. Sved †Michael J. Zigmond Janet M. Finlay 《Journal of neurochemistry》1994,63(2):575-583
Abstract: We examined whether prior exposure to chronic cold (17–28 days, 5°C) alters basal or stress-evoked (30-min tail shock) catecholamine release in medial prefrontal cortex, nucleus accumbens, and striatum, using in vivo microdialysis. Basal norepinephrine (NE) concentrations in medial prefrontal cortex did not differ between chronically cold-exposed rats and naive control rats (2.7 ± 0.3 vs. 2.5 ± 0.2 pg/20 µl, respectively). Basal dopamine (DA) efflux in any of the brain regions was not significantly different between chronically cold-exposed rats and naive rats. However, a trend for lower basal DA efflux in the cold-exposed relative to naive rats was observed in medial prefrontal cortex (1.5 ± 0.2 vs. 2.2 ± 0.3 pg/20 µl, respectively), nucleus accumbens (3.7 ± 0.8 vs. 5.4 ± 0.9 pg/20 µl, respectively), and striatum (4.4 ± 0.5 vs. 7.2 ± 1.5 pg/20 µl, respectively). In medial prefrontal cortex of rats previously exposed to cold, tail shock elicited a greater increase from baseline in both DA and NE efflux relative to that measured in naive rats (DA, 2.3 ± 0.3 vs. 1.2 ± 0.1 pg, respectively; NE, 3.8 ± 0.4 vs. 1.4 ± 0.2 pg, respectively). However, in nucleus accumbens or striatum of rats previously exposed to cold, the stress-induced increase in DA efflux was not significantly different from that of naive rats (nucleus accumbens, 1.8 ± 0.7 vs. 1.5 ± 0.3 pg, respectively; striatum, 1.9 ± 0.4 vs. 2.6 ± 0.7 pg, respectively). Thus, both cortical NE projections and cortically projecting DA neurons sensitize after chronic exposure to cold. In contrast, subcortical DA projections do not sensitize under these conditions. 相似文献
6.
内侧前额叶与社会认知 总被引:2,自引:0,他引:2
早期的研究表明杏仁核、前额叶、颞上沟、前扣带回等与人类的社会认知活动有关;随着多种新技术的应用。越来越多的研究发现其它一些脑区结构(如岛叶、基底节、白质等)也与社会认知和行为有关。本文综述了内侧前额叶在社会认知中的作用,重点介绍了内侧前额叶在心灵理论、情绪认知、社会推理与决策、道德判断、自我认知等社会认知活动中的作用。未来研究希望能从整体和动态上认识内侧前额叶在社会认知活动中的作用。 相似文献
7.
Paul A. Garris Leonard B. Collins Sara R. Jones R. Mark Wightman 《Journal of neurochemistry》1993,61(2):637-647
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation. 相似文献
8.
Yin Litian Li Fengqing Li Jue Yang Xiaorong Xie Xiaoyan Xue Linyuan Li Yanli Zhang Ce 《Neurochemical research》2019,44(7):1593-1601
Neurochemical Research - Matrix metalloproteinase-9 (MMP-9, Gelatinase B), an extracellular-acting Zn2+-dependent endopeptidase, are involved in brain pathologies including ischemia, glioma, and... 相似文献
9.
Aggressive behavior is widely observed throughout the animal kingdom because of its adaptiveness for social animals. However, when aggressive behavior exceeds the species-typical level, it is no longer adaptive, so there should be a mechanism to control excessive aggression to keep it within the adaptive range. Using optogenetics, we demonstrate that activation of excitatory neurons in the medial prefrontal cortex (mPFC), but not the orbitofrontal cortex (OFC), inhibits inter-male aggression in mice. At the same time, optogenetic silencing of mPFC neurons causes an escalation of aggressive behavior both quantitatively and qualitatively. Activation of the mPFC suppresses aggressive bursts and reduces the intensity of aggressive behavior, but does not change the duration of the aggressive bursts. Our findings suggest that mPFC activity has an inhibitory role in the initiation and execution, but not the termination, of aggressive behavior, and maintains such behavior within the adaptive range. 相似文献
10.
An Excitant Amino Acid Projection from the Medial Prefrontal Cortex to the Anterior Part of Nucleus Accumbens in the Rat 总被引:1,自引:0,他引:1
High-affinity uptake of neurotransmitter substrates in synaptosome-containing homogenates and tissue concentrations of amino acids were examined in subcortical areas 5-6 days after bilateral N-methyl-D-aspartate lesions confined to rat medial prefrontal cortex. D-[3H]Aspartate (32% of control) and [3H] gamma-aminobutyric acid ( [3H]GABA) (60% of control) uptakes were significantly reduced in medial prefrontal cortex, whereas [3H]choline (110% of control) uptake was unchanged, suggesting the production of axon-sparing lesions. The uptake of D-[3H]aspartate (76% of control), but not of [3H]GABA or [3H]choline, was significantly reduced in nucleus accumbens, with no concomitant reduction in amino acid concentrations. When examined in serial coronal sections, reduced D-[3H]aspartate uptake was confined to the most anterior 500 micron of nucleus accumbens (67% of contralateral sample). No significant reductions of uptake or amino acid concentrations were observed in caudate putamen or ventral tegmental area. These results suggest a role for glutamate or aspartate as neurotransmitters in projections from medial prefrontal cortex to anterior nucleus accumbens. Medial prefrontal cortex may represent the major excitatory cortical input to the nucleus accumbens. 相似文献
11.
12.
The present study was undertaken to examine the effects of different muscarinic receptor agonists on glutamate and GABA concentrations in the medial prefrontal cortex of the rat. In vivo perfusions were made in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intracortical perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant increase in extracellular [GLU] and [GABA]. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant increase in extracellular [GLU] and [GABA]. The effects of McN-A-343 on extracellular [GLU] and [GABA] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that M1 muscarinic receptor stimulation increases the extracellular concentrations of GLU and GABA in the medial prefrontal cortex of the rat. 相似文献
13.
In Vivo Assessment of Dopamine Uptake in Rat Medial Prefrontal Cortex: Comparison with Dorsal Striatum and Nucleus Accumbens 总被引:5,自引:1,他引:4
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex. 相似文献
14.
Comparison of Two Superfusion Systems for Study of Neurotransmitter Release from Rat Cerebral Cortex Slices 总被引:3,自引:2,他引:1
Depolarization-induced release of [3H]gamma-aminobutyric acid (GABA) and [3H]noradrenaline (NA) from rat cerebral cortex slices was studied in two superfusion systems: one with stationary and the other one with continuously shaken slice compartments. Calcium-dependent depolarization-induced release of GABA and NA could be demonstrated only with shaken slices. GABA, but not NA, could also be released by high K+ media and veratridine from stationary slices. Synaptic transmitter releasing mechanisms are apparently damaged in stationary slices, possibly due to impaired energy metabolism. 相似文献
15.
Many real-life decisions in complex and changing environments are guided by the decision maker’s beliefs, such as her perceived control over decision outcomes (i.e., agency), leading to phenomena like the “illusion of control”. However, the neural mechanisms underlying the “agency” effect on belief-based decisions are not well understood. Using functional imaging and a card guessing game, we revealed that the agency manipulation (i.e., either asking the subjects (SG) or the computer (CG) to guess the location of the winning card) not only affected the size of subjects’ bets, but also their “world model” regarding the outcome dependency. Functional imaging results revealed that the decision-related activation in the lateral and medial prefrontal cortex (PFC) was significantly modulated by agency and previous outcome. Specifically, these PFC regions showed stronger activation when subjects made decisions after losses than after wins under the CG condition, but the pattern was reversed under the SG condition. Furthermore, subjects with high external attribution of negative events were more affected by agency at the behavioral and neural levels. These results suggest that the prefrontal decision-making system can be modulated by abstract beliefs, and are thus vulnerable to factors such as false agency and attribution. 相似文献
16.
17.
Niall W. Duncan Christine Wiebking Brice Tiret Malgoranza Marjańska Dave J. Hayes Oliver Lyttleton Julien Doyon Georg Northoff 《PloS one》2013,8(4)
Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex – specifically the medial prefrontal cortex (mPFC) – and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc), dorsomedial thalamus (DMT), and periaqueductal grey (PAG). It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia. 相似文献
18.
γ-Aminobutyric Acid and Benzodiazepine Receptor Changes Induced by Unilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle 总被引:3,自引:2,他引:3
Quantitative autoradiography was used to ascertain alterations in [3H]muscimol, [3H]flunitrazepam (FLU), [3H]naloxone, [3H]D-alanine-D-leucine-enkephalin (DADL), and [3H]spiroperidol binding in basal ganglia 1 week, 4 weeks, and 5 months after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) in the rat. At 1 and 4 weeks following lesions, [3H]spiroperidol binding increased 33% in striatum. At 5 months, [3H]spiroperidol was only nonsignificantly increased above control. At 1 week, [3H]muscimol binding decreased 39% in ipsilateral globus pallidus (GP), but increased 41% and 11% in entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr), respectively. At 4 weeks, [3H]muscimol binding was reduced 19% in striatum and 44% in GP and remained enhanced by 32% in both EPN and SNr. These changes in [3H]muscimol binding persisted at 5 months. [3H]FLU binding was altered in the same direction as [3H]muscimol binding; however, changes were slower in onset and became significant (and remained so) only at 4 weeks after lesions. Decreases in [3H]naloxone and [3H]DADL binding were seen in striatum, GP, EPN, and SNr. Scatchard analyses revealed that only receptor numbers were altered. This study provides biochemical evidence for differential regulation of striatal GABAergic output to GP and EPN/SNr. 相似文献
19.
We have investigated gene expression changes produced by acute and chronic daily treatment with a prototypical antidepressant, imipramine, using DNA microarrays. The analysis of similarities in gene expression patterns among functionally related genes revealed four expression profile cluster areas that showed a highly significant overrepresentation of several functional classes. Genes encoding for proteins involved in cAMP metabolism, postsynaptic membrane proteins, and proto-oncogenes were overrepresented in different cluster areas. Furthermore, we found that serine proteases as a group were similarly regulated by chronic antidepressant treatment. Our data suggest that cAMP metabolism, synaptic function, and protein processing by serine proteases may be important targets of antidepressant treatment and potential objects for antidepressant drug development. 相似文献
20.
Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat
Zahra Kiasalari Mohsen Khalili Tourandokht Baluchnejadmojarad Mehrdad Roghani 《Neurochemical research》2016,41(5):1065-1072
Parkinson’s disease (PD) is a neurodegenerative disorder due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNC). PD finally leads to incapacitating symptoms including motor and cognitive deficits. This study was undertaken to assess protective effect of the flavanone hesperetin against striatal 6-hydroxydopamine lesion and to explore in more detail some underlying mechanisms including apoptosis, inflammation and oxidative stress. In this research study, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats received hesperetin (50 mg/kg/day) for 1 week. Hesperetin reduced apomorphine-induced rotational asymmetry and decreased the latency to initiate and the total time on the narrow beam task. It also attenuated striatal malondialdehyde and enhanced striatal catalase activity and GSH content, lowered striatal level of glial fibrillary acidic protein as an index of astrogliosis and increased Bcl2 with no significant change of the nuclear factor NF-kB as a marker of inflammation. Hesperetin treatment was also capable to mitigate nigral DNA fragmentation as an index of apoptosis and to prevent loss of SNC dopaminergic neurons. This study indicated the protective effect of hesperetin in an early model of PD via attenuation of apoptosis, astrogliosis marker and oxidative stress and it may be helpful as an adjuvant therapy for management of PD at its early stages. 相似文献