首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cardiacsarcolemmal vesicles, MgATP stimulatesNa+/Ca2+exchange with the following characteristics:1) increases 10-fold the apparentaffinity for cytosolic Ca2+;2) a Michaelis constant for ATP of~500 µM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory;4) not observed in the presence of20 µM eosin alone but reinstated when vanadate is added;5) mimicked by adenosine5'-O-(3-thiotriphosphate), without the need for vanadate, but not by ,-methyleneadenosine 5'-triphosphate; and 6) notaffected by unspecific protein alkaline phosphatase but abolished by aphosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLCeffect is counteracted by phosphatidylinositol. In addition, in theabsence of ATP,L--phosphatidylinositol4,5-bisphosphate (PIP2) was ableto stimulate the exchanger activity in vesicles pretreated with PI-PLC.This MgATP stimulation is not related to phosphorylation of thecarrier, whereas phosphorylation appeared in the phosphoinositides,mainly PIP2, thatcoimmunoprecipitate with the exchanger. Vesicles incubated with MgATPand no Ca2+ show a markedsynthesis ofL--phosphatidylinositol4-monophosphate (PIP) with little production ofPIP2; in the presence of 1 µM Ca2+, the net synthesis of PIP issmaller, whereas that of PIP2increases ninefold. These results indicate thatPIP2 is involved in the MgATPstimulation of the cardiacNa+/Ca2+exchanger through a fast phosphorylation chain: aCa2+-independent PIP formationfollowed by a Ca2+-dependentsynthesis of PIP2.

  相似文献   

2.
Amiloride is a weak inhibitor of Na+/Ca2+ exchange in isolated plasma membrane vesicles prepared from GH3 rat anterior pituitary cells. However, substitution on either a terminal guanidino nitrogen atom or the 5-amino nitrogen atom can increase inhibitory potency ca. 100-fold (I50 approximately 10 microM). A structure-activity study indicates that defined structural modifications of guanidino substituents are associated with increases in inhibitory activity. In contrast, analogues bearing 5-amino substituents generally increase in potency with increasing hydrophobicity of the substitution. Specificity in action of either class is indicated by several criteria. These inhibitors do not disrupt the osmotic integrity of the membrane, nor do they significantly interfere with plasmalemmal Ca2+-ATPase-driven Ca2+ uptake, Na+,K+-ATPase enzymatic activity, or the function of Ca2+ or K+ channels. Inhibition is freely reversible, further indicating a lack of nonspecific membrane effects. The mechanism by which each inhibitor class blocks exchange was found to be identical. Protonation of the guanidino moiety (i.e., cationic charge) is essential for activity. Analysis of transport inhibition as a function of Ca2+ concentration indicates noncompetitive kinetics. However, inhibition was reversed by elevating intravesicular Na+, indicating a competitive interaction with this ion. These results suggest that the inhibitors function as Na+ analogues, interact at a Na+ binding site on the carrier (presumably the site at which the third Na+ binds), and reversibly tie up the transporter in an inactive complex. In addition to blocking pituitary exchange, these analogues are effective inhibitors of the bovine brain and porcine cardiac transport systems.  相似文献   

3.
1. Harmaline was found to inhibit the Na+-Ca2+ exchange mechanism present in cardiac sarcolemmal vesicles. 2. The inhibition was dose-dependent and was observed in the range 10(-5) M-10(-2) M harmaline. 3. The effect was demonstrated on both 45Ca2+-uptake and 45Ca2+-efflux. 4. The observed Ki value for harmaline inhibition of 45Ca2+-uptake was found to be 2.5 X 10(-4) M.  相似文献   

4.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

5.
The transport of Na+ by a purified sarcolemmal vesicular preparation from canine ventricular tissue was studied as a function of both internal and external pH. The uptake of Na+ into sarcolemmal vesicles increased upon raising the extravesicular pH of the reaction medium. Half-maximal uptake of Na+ was observed at a pHo of about 8.1 and maximal uptake occurred at pH 8.6. The uptake of Na+ by sarcolemma was also dependent upon the intravesicular pH. Na+ uptake into sarcolemmal vesicles was greatly attenuated in the absence of a H+ gradient across the membrane. Transport of Na+ was potently inhibited by amiloride, a known blocker of Na+-H+ exchange. LiCl was also an effective inhibitor of Na+ transport. In the presence of optimal H+ gradients, Na+ uptake was linear for the first 5 seconds of the reaction and exhibited a Vmax of 290 nmol Na+/mg per min and a KNa of 3.5 mM. These experiments strongly indicate the presence of a Na+-H+ exchange system in cardiac sarcolemma. This activity appeared to be relatively specific for this membrane fraction. The identification of Na+-H+ exchange activity in a sarcolemmal vesicular fraction from the heart will permit extensive characterization of the regulation and kinetics of this antiporter in future investigations.  相似文献   

6.
Temperature dependence of Na+/Ca2+ exchange activity was studied in beef cardiac sarcolemmal vesicles in the absence and presence of the inhibitor amiloride and in proteoliposomes reconstituted with different lipid mixtures. Arrhenius plots for Na+/Ca2+ exchange activity in both control and amiloride-treated vesicles revealed an apparent energy of activation of 9665 +/- 585 (SE, n = 4) cal/mol, corresponding to a temperature coefficient (Q10) value of 1.70 +/- 0.05 (SE, n = 4) over the range 25-37 degrees C. When Na+/Ca2+ exchange was reconstituted into phosphatidylcholine (PC):phosphatidylserine (PS) (52:48, mol/mol), PC:PS:cholesterol (25:39:36, mol/mol), and PC:PS:distearoylphosphatidylcholine (DSPC) (31:48:21, mol/mol) proteoliposomes, the highest activity was found in PC:PS:cholesterol proteoliposomes. Arrhenius plots of Na+/Ca2+ exchange activity exhibited breakpoints at 23 degrees C (PC:PS), 33 degrees C (PC:PS:cholesterol), and 23 degrees C (PC:PS:DSPC). The increase in the thermotropic transition temperature with cholesterol could result from the condensing effect of this sterol, whereas the breaks observed with PC:PS and PC:PS:DSPC could be caused by a non-lipid-mediated membrane protein conformational change. These results indicate that the lipid microenvironment around the Na+/Ca2+ exchanger and the nature of the specific lipid-protein interactions influence the activity of this antiporter. Further evidence supporting the hypothesis that cholesterol behaves as a specific positive effector for the exchanger is also given.  相似文献   

7.
We examine the effects of 5-, 12- and 16-doxylstearic acids on the Na+-Ca2+ exchange and passive Ca2+ permeability of cardiac sarcolemmal vesicles. Stearic acid is a weak stimulator of Na+-Ca2+ exchange. A doxyl moiety potentiates stimulation with the order of increasing potency being 5-, 12- and then 16-doxylstearic acid. Stearic acid has little effect on vesicle Ca2+ permeability but again the doxylstearates are more effective. The sequence of potency is reversed, however, from that for increasing Na+-Ca2+ exchange. 5-Doxylstearic acid most markedly exchanges passive Ca2+ flux followed by the 12-, and then 16-doxylstearic acids. Methyl esters of the doxylstearates have no effect on either Na+-Ca2+ exchange or Ca2+ permeability. We model the results as follows. For a fatty acid to stimulate Na+-Ca2+ exchange activity, an anionic charge is required to interact with the exchanger protein at the membrane surface. Stimulation is potentiated by a perturbation (such as provided by a doxyl group) within the lipid bilayer. The perturbation is most effective at a location towards the center of the bilayer. To increase passive Ca2+ permeability an anionic charge is again essential. Disorder within the bilayer is also important, but now the most important site is near the membrane surface. Results of experiments with linolenic and gamma-linolenic acid and previous studies with other fatty acids also support this model.  相似文献   

8.
9.
Monoclonal antibodies 44D7 and 4F2 inhibited specifically the Na+-dependent Ca2+ fluxes characteristic of the Na+/Ca2+ exchanger in cardiac and skeletal muscle sarcolemmal vesicles. Preincubation of membrane vesicles with monoclonal antibody 44D7 inhibited 90% of the Na+-dependent Ca2+ uptake measured in the first 10 s of the reaction and 50% of that measured after 60 s. Ca2+/calmodulin-dependent ATPase activity and ATP-dependent Ca2+ uptake by sarcolemmal vesicles were not affected by monoclonal antibody 44D7 whereas the Na+-dependent release of accumulated Ca2+ was inhibited. In the presence of the 44D7 antigen isolated from human kidney, monoclonal antibody 44D7 could no longer inhibit Na+-dependent Ca2+ fluxes. The distribution of 4F2 antigenic activity in the isolated muscle membrane fractions correlated with that of Na+/Ca2+ exchanger activity; cardiac and skeletal muscle sarcolemmal vesicles expressed higher levels of the antigen than skeletal muscle transverse tubule membrane, while no antigen could be detected in sarcoplasmic reticulum membranes. Our results suggest that monoclonal antibodies 44D7 and 4F2 interact either directly with the Na+/Ca2+ exchanger molecules or with some other protein(s) responsible for the regulation of this activity in the heart and skeletal muscle.  相似文献   

10.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   

11.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

12.
Treatment of canine cardiac sarcolemmal vesicles with phospholipase D resulted in a large stimulation (up to 400%) of Na+-Ca2+ exchange activity. The phospholipase D treatment decreased the apparent Km (Ca2+) for the initial rate of Nai+-dependent Ca2+ uptake from 18.2 +/- 2.6 to 6.3 +/- 0.3 microM. The Vmax increased from 18.0 +/- 3.6 to 31.5 +/- 3.6 nmol of Ca2+/mg of protein/s. The effect was specific for Na+-Ca2+ exchange; other sarcolemmal transport enzymes ((Na+, K+)-ATPase; ATP-dependent Ca2+ transport) are inhibited by incubation with phospholipase D. Phospholipase D had little effect on the passive Ca2+ permeability of the sarcolemmal vesicles. After treatment with 0.4 unit/ml of phospholipase D (20 min, 37 degrees C), the sarcolemmal content of phosphatidic acid rose from 0.9 +/- 0.2 to 8.9 +/- 0.4%; simultaneously, Na+-Ca2+ exchange activity increased 327 +/- 87%. It is probable that the elevated phosphatidic acid level is responsible for the enhanced Na+-Ca2+ exchange activity. In a previous study (Philipson, K. D., Frank, J. S., and Nishimoto, A. Y. (1983) J. Biol. Chem. 258, 5905-5910), we hypothesized that negatively charged phospholipids were important in Na+-Ca2+ exchange, and the present results are consistent with this hypothesis. Stimulation of Na+-Ca2+ exchange by phosphatidic acid may be important in explaining the Ca2+ influx which accompanies the phosphatidylinositol turnover response which occurs in a wide variety of tissues.  相似文献   

13.
Exposure of canine cardiac sarcolemmal vesicles to alkaline media (greater than or equal to pH 12) results in the extraction of 33% of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that specific proteins are being solubilized. Most of the phospholipid and sialic acid remains with the pellet after centrifugation. Electron microscopy reveals that alkaline treatment does not cause gross morphological damage to the vesicles, although freeze-fracture demonstrates some aggregation of intramembrane particles. The data indicate that high pH probably removes peripheral proteins and leaves the integral proteins in place. We find complete recovery of Na+-Ca2+ exchange activity in alkaline-extracted membranes after solubilization and reconstitution. These vesicles contain only 50% of the protein of vesicles reconstituted from control sarcolemma. Thus, the specific activity of Na+-Ca2+ exchange is doubled. Alkaline extraction is a useful and reproducible procedure for enrichment of the Na+-Ca2+ exchange protein. (Na+ + K+)-ATPase is completely inactivated by exposure to pH 12 medium though immunodetection shows that the (Na+ + K+)-ATPase proteins are not extracted. We detect both alpha and alpha + forms of (Na+ + K+)-ATPase and deduce that the Na+ pump proteins do not comprise a major fraction of sarcolemmal protein.  相似文献   

14.
15.
The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.  相似文献   

16.
We have previously reported that anionic phospholipids (Philipson, K.D., and Nishimoto, A.Y. (1984) J. Biol. Chem. 259, 16-19) and other anionic amphiphiles (Philipson, K.D. (1984) J. Biol. Chem. 259, 13999-14002) stimulate Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. To further these studies, we have now investigated the effects of a variety of fatty acids on both Na+-Ca2+ exchange and passive Ca2+ permeability. Na+-Ca2+ exchange was stimulated by fatty acids by up to 150%. Unsaturated fatty acids were more potent than saturated fatty acids, and the stimulation was primarily due to a decrease in the apparent KM (Ca2+). There was a positive correlation between the ability of a fatty acid to stimulate Na+-Ca2+ exchange and to increase passive Ca2+ permeability. The methyl esters of fatty acids had no effects on either exchange or permeability indicating the importance of anionic charge. We conclude that the combination of local lipid disorder and anionic charge regulate Na+-Ca2+ exchange. Perturbations of the bilayer hydrophobic region and increased negative surface charge are both required for fatty acids to increase passive Ca2+ flux. Na+-Ca2+ exchange is stimulated when the ratio of membrane free fatty acid to phospholipid is about 5%. This level of fatty acid is achieved during 1 h of myocardial ischemia (Chien, K. R., Han, A., Sen, A., Buja, L. M., and Willerson, J. T. (1984) Circ. Res. 54, 313-322), indicating that ischemia could induce altered sarcolemmal Ca2+ transport due to fatty acid accumulation.  相似文献   

17.
Saponins can both permeabilize cell plasma membranes and cause positive inotropic effects in isolated cardiac muscles. Different saponins vary in their relative abilities to cause each effect suggesting that different mechanisms of action may be involved. To investigate this possibility, we have compared the effects of seven different saponins on the passive Ca2+ permeability and Na+-Ca2+ exchange activity of isolated canine cardiac sarcolemmal membranes. Saponins having hemolytic activity reversibly increased the passive efflux of Ca2+ from sarcolemmal vesicles preloaded with 45Ca2+ with the following order of potency: echinoside-A greater than echinoside-B greater than holothurin-A greater than holothurin-B greater than sakuraso-saponin. Ginsenoside-Rd and desacyl-jego-saponin, which lack hemolytic activity, had no significant effect on this variable. The saponins also stimulated Na+-Ca2+ exchange activity measured as Na+-dependent Ca2+ uptake by sarcolemmal vesicles. Ginsenoside-Rd and desacyl-jego-seponin, which did not affect passive Ca2+ permeability, stimulated the uptake, while in contrast, echinoside-A and -B only slightly increased or decreased this latter variable. Thus, the abilities of these compounds to enhance Na+-Ca2+ exchange activity seem to be inversely related to their abilities to increase the Ca2+ permeability. Effects by the echinosides on Na+-Ca2+ exchange may be masked by the loss of Ca2+ from the vesicles due to the increased permeability. These results suggest that the saponins interact with membrane constituent(s) that can influence the passive Ca2+ permeability and the Na+-Ca2+ exchange activity of cardiac sarcolemmal membranes.  相似文献   

18.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

19.
We have examined the effect of membrane methylation on the Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles using S-adenosyl-L-methionine as methyl donor. Methylation leads to approximately 40% inhibition of the initial rate of Nai+-dependent Ca2+ uptake. The inhibition is due to a lowering of the Vmax for the reaction. The inhibition is not due to an effect on membrane permeability and is blocked by S-adenosyl-L-homocysteine, an inhibitor of methylation reactions. The following experiments indicated that inhibition of Na+-Ca2+ exchange was due to methylation of membrane protein and not due to methylated phosphatidylethanolamine (PE) compounds (i.e., phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N'-dimethylethanolamine (PDME]: (1) We solubilized sarcolemma and reconstituted activity into vesicles containing no PE. The inhibition by S-adenosyl-L-methionine was not diminished in this environment. (2) We reconstituted sarcolemma into vesicles containing PMME or PDME. These methylated lipid components had no effect on Na+-Ca2+ exchange activity. (3) We verified that many membrane proteins, probably including the exchanger, become methylated.  相似文献   

20.
The Na+/Ca2+ exchanger (NCX) is the primary Ca2+ extrusion mechanism in cardiomyocytes. To further investigate the role of NCX in excitation-contraction coupling and Ca2+ homeostasis, we created murine models with altered expression levels of NCX. Homozygous overexpression of NCX resulted in mild cardiac hypertrophy. Decline of the Ca2+ transient and relaxation of contraction were increased and the reverse mode of NCX was augmented. Overexpression also led to a higher susceptibility to ischemia-reperfusion injury and to a greater ability of NCX to trigger Ca2+-induced Ca2+ release. Furthermore, an increase in peak L-type Ca2+ current was observed suggesting a direct influence of NCX on L-type Ca2+ current. Whereas global knockout of NCX led to prenatal death, a recently generated cardiac-specific NCX knockout mouse was viable with surprisingly normal contractile properties. Expression levels of other Ca2+-handling proteins were not altered. Ca2+ influx in these animals is limited by a decrease of peak L-type Ca2+ current. An alternative Ca2+ efflux mechanism, presumably the plasma membrane Ca2+-ATPase, is sufficient to maintain Ca2+-homeostasis in the NCX knockout mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号