首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli.  相似文献   

2.
《Hormones and behavior》2012,61(5):651-659
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli.  相似文献   

3.
Successful reproduction in mammals depends on proceptive or solicitational behaviors that enhance the probability of encountering potential mates. In female Syrian hamsters, one such behavior is vaginal scent marking. Recent evidence suggests that the neuropeptide oxytocin (OT) may be critical for regulating this behavior. Blockade of OT receptors in the bed nucleus of the stria terminalis (BNST) or the medial preoptic area (MPOA) decreases vaginal marking responses to male odors; lesion data suggest that BNST, rather than MPOA, mediates this effect. However, how OT interacts with sexual odor processing to drive preferential solicitation is not known. To address this issue, intact female Syrian hamsters were exposed to male or female odors and their brains processed for immunohistochemistry for Fos, a marker of recent neuronal activation, and OT. Additional females were injected intracerebroventricularly (ICV) with an oxytocin receptor antagonist (OTA) or vehicle, and then tested for vaginal marking and Fos responses to sexual odors. Colocalization of OT and Fos in the paraventricular nucleus of the hypothalamus was unchanged following exposure to male odors, but decreased following exposure to female odors. Following injections of OTA, Fos expression to male odors was decreased in BNST, but not in MPOA or the medial amygdala (MA). Fos expression in BNST may be functionally relevant for vaginal marking, given that there was a positive correlation between Fos expression and vaginal marking for BNST, but not MPOA or MA. Together, these data suggest that OT facilitation of neuronal activity in BNST underlies the facilitative effects of OT on solicitational responses to male odors.  相似文献   

4.
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.  相似文献   

5.
The present study was designed to investigate the role of androgen in the medial amygdala (MeA) in the expression of sexual odor preference in male rats. Gonadally intact, sexually experienced male rats received bilateral administration of flutamide, an androgen receptor (AR) blocker, aimed at either the posterior dorsal part (MePD) or the anterior dorsal part (MeAD) of the MeA through inner cannulae inserted into the implanted guide cannulae. Prior to flutamide administration, all subjects spent longer sniffing volatile odors from an estrous female than those from a sexually active male. Experiment 1 demonstrated that the preference for the female odors over the male odors was eliminated during flutamide administration into the MePD, but not into either the MeAD or outside MePD/MeAD. This elimination of the female-directed odor preference resulted from increase of time sniffing the male odors rather than decrease of time sniffing the estrous odors. In Experiment 2, odor discrimination tests confirmed that the flutamide administration into the MePD did not induce impairment in the ability of the subjects to discriminate the estrous odors from the male odors. These results demonstrated that activation of AR in the MePD plays a critical role in the expression of the preference for estrous odors over male odors. AR blockade, however, seemed to induce a preference for male odors rather than reduce the existing preference for estrous odors, suggesting a complicated regulation of sexual odor preference by sex steroids.  相似文献   

6.
The present study was designed to investigate the role of the medial preoptic area (MPOA) and the bed nucleus of the stria terminalis (BNST) in the onset and maintenance of maternal behavior in sheep. In a first experiment, the MPOA or BNST were transiently inactivated during the first 2 h postpartum in primiparous ewes with the use of the anaesthetic lidocaine. MPOA inactivation greatly impaired the display of maternal behavior whereas inactivation of BNST or of adjacent sites (septum or diagonal band of Broca) or infusion of cerebrospinal fluid did not. In a separation/reunion lamb test (S/R) performed at 2 h postpartum, ewes with MPOA inactivation exhibited little reaction after separation of their lambs and did not show any motivation to reunite with them. Ewes with BNST inactivation showed intermediate performances in the S/R test. Moreover, in control ewes that were maternal for the first 2 h postpartum, MPOA or BNST inactivation performed in the following 12 h induced deficits in the S/R test, indicating that the MPOA and to a lesser extent BNST are also involved in the maintenance of maternal behavior. A second experiment showed that, in multiparous ewes, MPOA inactivation at parturition induced less deficit in the display of maternal behavior and in the S/R test than in primiparous mothers. These findings indicate that the MPOA and, to some extent, the BNST are functionally involved in the initiation and in the maintenance of maternal behavior in sheep, but this involvement is influenced by maternal experience.  相似文献   

7.
This study was designed to investigate the effects of pheromonal cues and specific behaviors within the male copulatory sequence on c-fos expression in the medial nucleus of the amygdala (Me), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA) of the Syrian hamster brain. Sexually experienced male hamsters were placed into clean testing arenas and were either: 1) left alone as handled controls; 2) exposed to female hamster vaginal secretion (FHVS) on cotton swabs; or mated to various end points of copulation with a sexually receptive female: 3) five intromissions, 4) one ejaculation, 5) five ejaculations, or 6) long intromissions. A seventh group of sexually naive control males 7) was left alone in the arena. The brains of these males were compared to those of the sexually experienced controls to determine whether exposure to cues associated with prior sexual experience could alter c-fos expression. In males exposed only to FHVS, Fos immunoreactivity (Fos-ir) increased within the posterodorsal Me, the anterodorsal part of the posteromedial BNST, and the magnocellular medial preoptic nucleus (MPNmag). Following one ejaculation, Fos-ir increased within the caudal posterodorsal Me, the dorsolateral MPOA, and the paraventricular nucleus of the hypothalamus. After multiple ejaculations, additional labeling was observed within the posteroventral part of the posteromedial BNST, the medial preoptic nucleus (MPN), the central tegmental field, and in cell clusters of the caudal posterodorsal Me and rostral posteromedial BNST. Fos-ir also increased within the posterodorsal Me, MPN, and MPNmag in sexually experienced control males exposed to the empty test chamber compared to sexually naive males exposed to an identical chamber. These results demonstrate that the mating-induced pattern of neuronal activation in sexually experienced males is dependent upon multiple factors, including prior sexual experience in the testing environment, investigation of FHVS, and the number of ejaculations achieved. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 481–501, 1997  相似文献   

8.
Our previous study in male rats demonstrated that bilateral administration of flutamide, an androgen receptor (AR) antagonist, into the posterodorsal medial amygdala (MePD) increased the time sniffing male odors to as high as that sniffing estrous odors, eliminating the preference for estrous odors over male odors. This made us speculate that under blockade of AR in the MePD, testosterone-derived estrogen acting on the same brain region arouses interest in male odors which is otherwise suppressed by concomitant action of androgen. In cyclic female rats, endogenous androgen has been thought to be involved in inhibitory regulation of estrogen-activated sexual behavior. Thus, in the present study, we investigated the possibility that in female rats the arousal of interest in male odors is also normally regulated by both estrogen and androgen acting on the MePD, as predicted by our previous study in male rats. Implantation of either the estrogen receptor blocker tamoxifen (TX) or a non-aromatizable androgen 5α-dihydrotestosterone (DHT) into the MePD of ovariectomized, estrogen-primed female rats eliminated preference for male odors over estrous odors by significantly decreasing the time sniffing male odors to as low as that sniffing estrous odors. The subsequent odor discrimination tests confirmed that the DHT and TX administration did not impair the ability to discriminate between male and estrous odors. These results suggest that in estrous female rats estrogen action in the MePD plays critical roles in the expression of the preference for male odors while androgen action in the same brain region interferes with the estrogen action.  相似文献   

9.
Female‐emitted pheromonal inputs possess an intrinsic rewarding value for conspecific males, promoting approach and investigation of the potential mating partner. In mice these inputs are detected mainly by the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). We investigated the role of VNO‐mediated inputs in experience‐dependent plasticity of reproductive responses. We applied a sex‐specific conditioned odor aversion (COA) paradigm on adult, wild‐type (WT) male mice and on male mice impaired in VNO‐mediated signal transduction (TrpC2?/?). We found that WT males, which underwent COA to female‐soiled bedding, lost their innate preference to female odors and presented lower motivation to approach a sexually receptive female. COA also abolished the testosterone surge normally seen following exposure to female odors. Moreover, the conditioned males displayed impairments in copulatory behaviors, which lasted for several weeks. Surprisingly, these males also exhibited phobic behaviors towards receptive females, including freezing and fleeing responses. In contrast, WT males which underwent COA specifically to male pheromones showed no change in olfactory preference and only a marginally significant elevation in intermale aggression. Finally, we show that TrpC2?/? males were able to acquire aversion to female‐soiled bedding and presented similar behavioral alterations following COA in their responses to female cues. Our results demonstrate that the intrinsic rewarding value of female pheromones can be overridden through associative olfactory learning, which occurs independently of VNO inputs, probably through MOE signaling.  相似文献   

10.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   

11.
There are some apparently healthy male rats that fail to mate after repeated testing with receptive females. We have previously shown that these "non-copulator (NC)" males show no partner preference for a receptive female when given the opportunity to physically interact with a sexually receptive female or a sexually active male. We also demonstrated that although NC males prefer odors from estrous females to odors from anestrous females, this preference is significantly reduced in comparison to the preference displayed by copulating (C) males. The aim of the present study was to evaluate in NC males sexual incentive motivation, that is, the approach behavior of male rats to either a sexually receptive female or a sexually active male in a test where the subjects can smell, hear, and see the stimulus animal but prevents their physical interaction. In addition, we determined whether NC rats have alterations in their ability to detect odors from conspecifics or odors related to food. In the detection of odors from conspecifics, we determined if these NC males are sexually attracted toward odors from receptive females or sexually active males. For food-related odors, we quantified the time it took the subjects to locate a hidden a piece of apple. Finally, using the induction of Fos-immunoreactivity (Fos-IR) as an index of neuronal activation, we compared the response of the vomeronasal projection pathway (VN pathway) of C and NC male rats exposed to estrous bedding. Males without sexual experience (WSE) were included in all experiments to determine the importance of previous heterosexual experience in the different behavioral tests and in the activity of the VN pathway. In the sexual incentive motivation test, we found that C and WSE male rats have a clear preference for estrous females over sexually active males, whereas NC male rats showed no preference. In odor tests, our results showed that C males had a clear preference for odors from estrous females as opposed to odors from sexually active males. Although NC and WSE male rats showed a preference for estrous female odors, this preference was significantly reduced compared to that shown by C males. No differences were found between WSE, C, and NC males in the detection of stimuli associated with food-related odors. A significant increase in Fos-IR was observed in the mitral cell layer of the accessory olfactory bulb in all groups when exposed to estrous bedding. However, only the C male rats exposed to estrous female bedding showed an increase Fos-IR in all structures of the VN pathway. An increase in Fos-IR was observed in the medial preoptic area (MPOA) of WSE males exposed to estrous bedding. No increases in Fos-IR were detected along the VN pathway in NC male rats. We proposed that NC male rats do not display sexual behavior due to a reduced sexual motivation that could be caused by alterations in the neuronal activity of the VN pathway during the processing of estrous odors.  相似文献   

12.
Chemosensory and hormonal stimuli are essential for mating in the male Syrian hamster. These signals are processed in a neural circuit that includes the medial amygdaloid nucleus (Me), bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Nitric oxide is implicated in the regulation of male sexual behavior, and nitric oxide synthase (NOS), the enzyme that catalyzes the production of nitric oxide, is present in the limbic system. In this study, the distribution of NOS-containing neurons in mating behavior circuitry of the male Syrian hamster brain was determined using labeling for brain NOS (bNOS) and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). bNOS and NADPH-d labeled equivalent populations of neurons. NOS-containing neurons were clustered in specific subnuclei within the Me, BNST, and MPOA. NOS-positive fibers and neurons were seen in the stria terminalis and ventral amygdalofugal pathway, which link the Me with BNST and MPOA. Many NOS-positive neurons in the posterior subdivision of the Me, the medial preoptic nucleus (MPN), and the ventral premammillary nucleus contain androgen receptors. Castration reduced NOS-positive neurons in the MPN, implying a selective regulation of NOS by gonadal steroids. Together, these results suggest that NOS may contribute to the regulation of male sexual behavior by influencing the central neural processing of hormonal and chemosensory signals in the hamster limbic system. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The medial preoptic area (MPOA) is an important integrative site for male sexual behavior. We have reported an increase in dopamine (DA) release in the MPOA of male rats shortly before and during copulation. Postcastration loss of copulatory ability mirrored the loss of the precopulatory DA response to an estrous female. The present study investigated the time courses of restoration, rather than loss, of the MPOA DA response to a receptive female and of copulation in long-term castrates. Male rats were castrated and tested for loss of copulatory ability 21 days later. They then received 2, 5, or 10 daily subcutaneous injections of testosterone propionate (TP, 500 microg) or oil. Microdialysate samples were collected from the MPOA during baseline, exposure to a female behind a barrier, and copulation. Extracellular DA was measured using HPLC-EC. None of the six 2-day-TP-treated animals copulated, nor did they show elevated DA release in the MPOA in the presence of a receptive female. Five of the nine 5-day-TP-treated animals ejaculated; three intromitted without ejaculating; and one failed to copulate, with all but the noncopulating animal showing elevated DA release. All of the six 10-day-TP-treated animals copulated and also demonstrated an increase in MPOA DA. None of the oil controls copulated or showed an increase in DA release. Therefore, a consistent relationship between MPOA DA release during exposure to a receptive female and the subsequent ability of the male to copulate was observed.  相似文献   

14.
Five experiments examined the hormonal regulation of the precopulatory reproductive behavior of male housemice of two genotypes (DBA/2J inbreds and C57BL/6J X AKR/J hybrids). The two precopulatory behaviors examined were preferences for female urinary odors and ultrasonic courtship vocalizations to anesthetized females. The preferences were then used to make inferences about odor attractiveness. Gonadally intact hybrid males were highly attracted to the airborne urinary odors of female mice but were either indifferent to, or exhibited less attraction to, male urinary odors. Castration decreased male attraction to female odor such that castrated males were equally attracted to male and female odors. Normal levels of attraction could be maintained in castrated hybrid males by Silastic implants of either testosterone or estradiol. While Silastic implants of dihydrotestosterone (DHT) were also effective in maintaining attraction in hybrids, this hormone was ineffective in inbreds. The effectiveness of estradiol, DHT, and testosterone in maintaining attraction following castration was paralleled in castrated hybrids by the effects of these hormones in maintaining courtship vocalizations to females. In contrast to the genotype-specific effects of DHT upon behavior, DHT was effective in both genotypes in maintaining seminal vesicle weight. Estradiol, on the other hand, which was quite effective in maintaining both precopulatory behaviors in hybrids, had little effect upon seminal vesicle weight. Thus these experiments dissociate the behavioral effects of steroids from their effects upon peripheral morphology. We suggest that testosterone can activate precopulatory behaviors following either aromatization or 5-alpha reduction but that genetic variability somehow gives rise to strain differences in DHT responsiveness.  相似文献   

15.
Testosterone-dependent olfactory signals emitted by male are well known to accelerate female puberty in mice (Vandenbergh effect). However, it remains unclear whether these chemosignals also influence adult expression of male-directed odor preference. Therefore, we exposed female mice to intact or castrated male bedding (vs clean bedding as control) during the peripubertal period (postnatal day (PD) 21–38) and measured male-directed odor preference in adulthood. At PD45 or PD60, females exposed to intact male odors, and thus showing puberty acceleration, preferred to investigate odors from intact males over females or castrated males. Females exposed to castrated male odors did not show puberty acceleration but preferred male (intact or castrated) over female odors. Finally, control females did not show any odor preference when tested at PD45, although a preference for male odors emerged later (PD60). In a second experiment, females that were exposed to intact male odors after pubertal transition (PD36–53) also preferred intact male over castrated male odors. In conclusion, our results indicate that peripubertal exposure to male odors induced early expression of male-directed odor preference regardless of puberty-accelerating effect and that induction of male-directed odor preference is not specific to the peripubertal period.  相似文献   

16.
《Hormones and behavior》2009,55(5):676-683
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

17.
During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity.  相似文献   

18.
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

19.
啮齿动物的社会识别包括对化学信号的辨别、学习和记忆。田鼠属动物雌雄成年个体共居一定时间后,可以利用气味信号来识别配偶。本研究将成年雌雄布氏田鼠配对饲养12 h、18 h、24 h,确认发生交配行为形成配对关系后,分开单独饲养6 h,取配偶雄鼠和陌生雄鼠巢垫物作为个体气味,在气味选择箱中观察雌鼠对配偶雄鼠和陌生雄鼠气味信号的探究和选择行为,从而探讨不同共居时间雌性布氏田鼠对配偶气味信号的识别与记忆的影响。研究结果表明:共居时间影响雌性布氏田鼠对配偶气味的识别与记忆;共居时间越长,雌鼠在气味探究和选择时间上对配偶气味偏好越明显;共居24 h 后,雌性布氏田鼠能够识别出配偶雄鼠的气味信号并形成记忆,这样的记忆维持时间至少是6 h。  相似文献   

20.
Male reproductive behavior is highly dependent upon gonadal steroids. However, between individuals and across species, the role of gonadal steroids in male reproductive behavior is highly variable. In male B6D2F1 hybrid mice, a large proportion (about 30%) of animals demonstrate the persistence of the ejaculatory reflex long after castration. This provides a model to investigate the basis of gonadal steroid-independent male sexual behavior. Here we assessed whether non-gonadal steroids promote mating behavior in castrated mice. Castrated B6D2F1 hybrids that persisted in copulating (persistent copulators) were treated with the androgen receptor blocker, flutamide, and the aromatase enzyme inhibitor, letrozole, for 8 weeks. Other animals were treated with the estrogen receptor blocker, ICI 182,780, via continual intraventricular infusion for 2 weeks. None of these treatments eliminated persistent copulation. A motivational aspect of male sexual behavior, the preference for a receptive female over another male, was also assessed. This preference persisted after long-term castration in persistent copulators, and administration of ICI 182,780 did not influence partner preference. To assess the possibility of elevated sensitivity to sex steroids in brains of persistent copulators, we measured mRNA levels for genes that code for the estrogen receptor-α, androgen receptor, and aromatase enzyme in the medial preoptic area and bed nucleus of the stria terminalis. No differences in mRNA of these genes were noted in brains of persistent versus non-persistent copulators. Taken together our results suggest that non-gonadal androgens and estrogens do not maintain copulatory behavior in B6D2F1 mice which display copulatory behavior after castration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号