首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is an exploration of contemporary protist taxonomy within an ecological perspective. As it currently stands, the 'morphospecies' does not accommodate the information that might support a truly ecological species concept for the protists. But the 'morphospecies' is merely a first step in erecting a taxonomy of the protists, and it is expected to become more meaningful in the light of genetic, physiological and ecological research in the near future. One possible way forward lies in the recognition that sexual and asexual protists may all be subject to forces of cohesion that result in (DNA) sequence-similarity clusters. A starting point would then be the detection of 'ecotypes'--where genotypic and phenotypic clusters correspond; but for that we need better information regarding the extent of clonality in protists, and better characterization of ecological niches and their boundaries. There is some progress with respect to the latter. Using the example of a community of ciliated protozoa living in the stratified water column of a freshwater pond, it is shown to be possible to gauge the potential of protists to partition their local environment into ecological niches. Around 40 morphospecies can coexist in the superimposed water layers, which presumably represent different ecological niches, but we have yet to discover if these are discrete or continuously variable. It is a myth that taxonomic problems are more severe for protists than for animals and plants. Most of the fundamental problems associated with species concepts (e.g. asexuals, sibling species, phenotypic variation) are distributed across biota in general. The recent history of the status of Pfiesteria provides a model example of an integrated approach to solving what are essentially taxonomic problems.  相似文献   

2.
Heterotrophic protists are abundant in most environments and exert a strong top‐down control on bacterial communities. However, little is known about how selective most protists are with respect to their bacterial prey. We conducted feeding trials using cercomonad and glissomonad Cercozoa by assaying them on a standardized, diverse bacterial community washed from beech leaf litter. For each of the nine protist strains assayed here, we measured several phenotypic traits (cell volume, speed, plasticity and protist cell density) that we anticipated would be important for their feeding ecology. We also estimated the genetic relatedness of the strains based on the 18S rRNA gene. We found that the nine protist strains had significantly different impacts on both the abundance and the composition of the bacterial communities. Both the phylogenetic distance between protist strains and differences in protist strain traits were important in explaining variation in the bacterial communities. Of the morphological traits that we investigated, protist cell volume and morphological plasticity (the extent to which cells showed amoeboid cell shape flexibility) were most important in determining bacterial community composition. The results demonstrate that closely related and morphologically similar protist species can have different impacts on their prey base.  相似文献   

3.
The study of protistan functional diversity is crucial to understand the dynamics of oceanic ecological processes. We combined the metabarcoding data of various coastal ecosystems and a newly developed trait-based approach to study the link between taxonomic and functional diversity across marine protistan communities of different size-classes. Environmental DNA was extracted and the V4 18S rDNA genomic region was amplified and sequenced. In parallel, we tried to annotate the operational taxonomic units (OTUs) from our metabarcoding dataset to 30 biological traits using published and accessible information on protists. We then developed a method to study trait correlations across protists (i.e. trade-offs) in order to build the best functional groups. Based on the annotated OTUs and our functional groups, we demonstrated that the functional diversity of marine protist communities varied in parallel with their taxonomic diversity. The coupling between functional and taxonomic diversity was conserved across different protist size classes. However, the smallest size-fraction was characterized by wider taxonomic and functional groups diversity, corroborating the idea that nanoplankton and picoplankton are part of a more stable ecological background on which larger protists and metazoans might develop.  相似文献   

4.
Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for animals, fungi, and higher plants, there is an ongoing discussion about suitable markers for microalgae and protists because these organisms are genetically more diverse compared to the former groups. To solve these problems, we assess the usage of a polyphasic approach combining phenotypic and genetic parameters for species and generic characterization. The application of barcode markers for database queries further allows conclusions about the ‘coverage’ of culture-based approaches in biodiversity studies and integrates additional aspects into modern taxonomic concepts. Although the culture-dependent approach revealed three new lineages, which are described as new species in this paper, the culture-independent analyses discovered additional putative new species. We evaluated three barcode markers (V4, V9 and ITS-2 regions, nuclear ribosomal operon) and studied the morphological and physiological plasticity of Coccomyxa, which became a model organism because its whole genome sequence has been published. In addition, several biotechnological patents have been registered for Coccomyxa. Coccomyxa representatives are distributed worldwide, are free-living or in symbioses, and colonize terrestrial and aquatic habitats. We investigated more than 40 strains and reviewed the biodiversity and biogeographical distribution of Coccomyxa species using DNA barcoding. The genus Coccomyxa formed a monophyletic group within the Trebouxiophyceae separated into seven independent phylogenetic lineages representing species. Summarizing, the combination of different characteristics in an integrative approach helps to evaluate environmental data and clearly identifies microalgae at generic and species levels.  相似文献   

5.
Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup.  相似文献   

6.
Classical studies on protist diversity of freshwater environments worldwide have led to the idea that most species of microbial eukaryotes are known. One exemplary case would be constituted by the ciliates, which have been claimed to encompass a few thousands of ubiquitous species, most of them already described. Recently, molecular methods have revealed an unsuspected protist diversity, especially in oceanic as well as some extreme environments, suggesting the occurrence of a hidden diversity of eukaryotic lineages. In order to test if this holds also for freshwater environments, we have carried out a molecular survey of small subunit ribosomal RNA genes in water and sediment samples of two ponds, one oxic and another suboxic, from the same geographic area. Our results show that protist diversity is very high. The majority of phylotypes affiliated within a few well established eukaryotic kingdoms or phyla, including alveolates, cryptophytes, heterokonts, Cercozoa, Centroheliozoa and haptophytes, although a few sequences did not display a clear taxonomic affiliation. The diversity of sequences within groups was very large, particularly that of ciliates, and a number of them were very divergent from known species, which could define new intra-phylum groups. This suggests that, contrary to current ideas, the diversity of freshwater protists is far from being completely described.  相似文献   

7.
Assessment of the distribution and diversity of free-living protists is currently hampered by a limited taxonomic resolution of major phyla and by neglecting the significance of spatial and temporal scaling for speciation. There is a tremendous physiological and ecological diversity that is hidden at the morphological level and not apparent at the level of conserved genes. A conceptual framework linking the various levels of diversity is lacking. Neutral genetic markers are useful indicators of population structure and gene flow between populations, but do not explain adaptation to local habitat conditions. The correspondence between protein-coding genes, ecophysiological performance, and fitness needs to be explored under natural conditions. The area and the associated typical temporal dimension of active cells (their ‘home range’) are much smaller, respectively shorter, than the area and time period potentially covered during passive dispersal of protist resting stages. The assumptions that dispersal rates are generally high in free-living protists and that extinction of local populations is, therefore, infinitesimally small wait rigorous testing. Gene flow may be uncoupled largely from dispersal, because local adaptation and numerical effects of residents may strongly reduce or even prevent successful invasion (immigration). The significance of clonal selection depends on the as yet unknown frequency and timing of sexual reproduction, and on the stability of the environment. The extent of local adaptation and the fitness-related ecophysiological divergence are critical for the speciation process and, hence, for defining protist species. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

8.
Protist diversity and distribution: some basic considerations   总被引:1,自引:0,他引:1  
This essay discusses protist species number and geographic distribution, both heavily influenced by undersampling and human introductions. The features of the ubiquity model and the moderate endemicity model are compared. I recognize five main flaws of the ubiquity model, viz., the ignorance of the extraordinary possibilities protists have to speciate due to their short generation time and the likelihood that many persisted over geological time scales; that all protist species have high abundances; that their small size is a main reason for global distribution; the ignorance of human introductions; and the rejection of literature evidence on the occurrence of flagship species with restricted distribution in a wide variety of protists. Thus, the data available support the moderate endemicity model which proposes about 300,000 extant, free-living protist species, of which one third might have a restricted distribution, i.e., is not cosmopolitan in spite of suitable habitats. To sum up, the distribution of protists, flowering plants, and larger animals has much in common, but protists usually have wider ranges and thus a higher proportion of cosmopolites. Future research should reconcile morphologic, genetic, and ecological species concepts because this is crucial for determining the number of protist species. Further, greatly intensified research is required on morphospecies in heterotrophic protists because their diversity has never been investigated in large areas of the earth. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

9.
Coral taxonomy and systematics continue to be plagued by a host of problems. Due to high phenotypic variability within species, morphological approaches have often failed to recognize natural taxa, and molecular techniques have yet to be applied to many groups. Here, we summarize the levels of paraphyly found for scleractinian corals and test, based on new data, whether paraphyly is also a significant problem in Faviidae, the second-most speciose hermatypic scleractinian family. Using both DNA sequence and morphological data we find that, regardless of analysis technique (maximum parsimony, maximum likelihood and Bayesian likelihood), many conventional taxonomic groups are not monophyletic. Based on two mitochondrial markers (COI and a noncoding region) that we amplified for 81 samples representing 41 faviid species and 13 genera, five genera that are represented by more than one species are paraphyletic, as is the family Faviidae. The morphological characters currently used to identify these corals similarly fail to recover many genera. Furthermore, trees based on both data types are incongruent, and total evidence analysis does little to salvage conventional taxonomic groupings. Morphological convergence, phenotypic variability in response to the environment, and recent speciation are likely causes for these conflicts, which suggest that the present classification of corals is in need of a major overhaul. We propose more detailed studies of problematic faviid taxa using standardized morphological, mitochondrial, and nuclear genetic markers to facilitate combining of data.  相似文献   

10.
Although mutualistic associations between animals and microbial symbionts are widespread in nature, the mechanisms that have promoted their evolutionary persistence remain poorly understood. A vertical mode of symbiont transmission (from parents to offspring) is thought to ensure partner fidelity and stabilization, although the efficiency of vertical transmission has rarely been investigated, especially in cases where hosts harbour a diverse microbial community. Here we evaluated vertical transmission rates of cellulolytic gut oxymonad and parabasalid protists in the wood‐feeding termite Reticulitermes grassei. We sequenced amplicons of the 18S rRNA gene of protists from 24 colonies of R. grassei collected in two populations. For each colony, the protist community was characterized from the gut of 14 swarming reproductives and from a pool of 10 worker guts. A total of 98 operational taxonomic units belonging to 13 species‐level taxa were found. The vertical transmission rate was estimated for each protist present in a colony based on its frequency among the reproductives. The results revealed that transmission rates were high, with an average of 0.897 (±0.164) per protist species. Overall, the protist community did not differ between reproductive sexes, suggesting that both the queen and the king could contribute to the gut microbiota of the offspring. A positive relationship between the transmission rate of protists and their prevalence within populations was also detected. However, transmission rates alone do not explain the prevalence of protists. In conclusion, these findings reveal key forces behind a conserved, multispecies mutualism, raising further questions on the roles of horizontal transfer and negative selection in shaping symbiont prevalence.  相似文献   

11.
12.
Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species. Our approach recovers a similar number of species recognized using traditional, qualitative taxonomic approaches that are not detected when using purely genetic methods. Furthermore, our approach detects groupings that traditional, qualitative taxonomic approaches do not. This empirical test suggests that our approach to detecting and assigning individuals to putative species could be useful in species delimitation despite varying levels of differentiation across genetic, phenotypic and ecological axes. This work highlights a critical, and often overlooked, aspect of the process of statistical species delimitation—species detection and individual assignment. Irrespective of the species delimitation approach used, all downstream processing relies on how individuals are initially assigned, and the practices and statistical issues surrounding individual assignment warrant careful consideration.  相似文献   

13.
ABSTRACT Studies were undertaken to discover the relative molecular distances separating some familiar forms of ciliated protozoa, and the genetic species they include. Sequences of 190 bases of the D2 domain of the large ribosomal nucleic acid molecule were obtained by polymerase chain reaction from protists of three distinctive groups of ciliated protozoa- Colpoda, Paramecium and Tetrahymena. Evolutionary trees were constructed for each set of sequences using the PHYLOGEN 1.0 string programs. All three groups of ciliates manifested large molecular diversity among strains difficult or impossible to distinguish morphologically. The largest single evolutionary distance within a group was the 75 differences separating Tetrahymena paravorax from the other tetrahymenids. The largest mean distance for a group was the 21.2 for the colpodids. In all the protist groups the large molecular diversity is obscured by morphological conservatism associated with constraints of ancient designs. The molecular diversity within morphotypes argues for long evolutionary coexistence of species differentiated from each other in significant physiological, ecological, or nutritional ways.  相似文献   

14.
The importance of identifying biological diversity accurately and efficiently is becoming more evident. It is therefore critical to determine the species boundaries between closely related taxa and to establish diagnostic characters that allow us to define species. This is not an easy task when species exhibit high intraspecific phenotypic plasticity or when distinct evolutionary lineages with an unusually large amount of genetic distinctiveness show no apparent morphological diversity (cryptic species). These phenomena appear to be common in the genus of fan worms Branchiomma (Sabellidae, Annelida), and consequently, taxonomic errors are widespread in the group. Moreover, some Branchiomma species have been unintentionally translocated outside the area where natural range extension is expected, increasing the taxonomic problems. We have performed a range of analytical methods including genetic distances, Bayesian inference, maximum likelihood, maximum parsimony, statistical parsimony analyses and general mixed Yule coalescent model to clarify the taxonomic status and assess the species boundaries of Branchiomma in Australia. This study shows that the traditional diagnostic morphological features are greatly homoplastic. Results also indicate that the diversity of Branchiomma in Australia is higher than previously reported and evidence some cases of high phenetic plasticity (in features previously considered as stable within species), high intraspecific genetic variability, cryptic species and several unexpected cases of translocations.  相似文献   

15.
The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.  相似文献   

16.
The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.  相似文献   

17.
Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400–1000 m), this ratio increases to 12 at high elevation (2000–3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient.  相似文献   

18.
Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa–area and distance–decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence–absence and abundance‐based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free‐living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro‐ and micro‐organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests.  相似文献   

19.
Elucidation of the potential roles of single-celled eukaryotes (protists) in ecosystem function and trophodynamics in hydrothermal vent ecosystems is reliant on information regarding their abundance, distribution and preference for vent habitats. Using high-throughput 18S rRNA gene sequencing on a diverse suite of hydrothermally influenced and background water samples, we assess the diversity and distribution of protists and identify potential vent endemics. We found that 95% of the recovered sequences belong to operational taxonomic units (OTUs) with a cosmopolitan distribution across vent and non-vent habitats. Analysis of ‘vent only’ OTUs found in more than one vent sample and co-occurrence network analysis comparing protist groups to extremophilic reference organisms suggest that the most likely vent endemics are infrequently encountered, potentially in low abundance, and belong to novel lineages, both at the phylum level and within defined clades of Rhizaria and Stramenopila. Potential endemism is inferred for relatives of known apusomonads, excavates and some clades of Syndiniales. Similarity in community composition among samples was low, indicating a strong stochastic component to protist community assembly and suggesting that rare endemics may serve as a reservoir poised to respond to changing environmental conditions in these dynamic systems.  相似文献   

20.
1. Mixotrophs are organisms which combine phototrophy and heterotrophy; such nutritional behaviour is widespread among protists. This ability to combine multiple modes of nutrition varies between species and is not related to their taxonomic grouping. A classification of mixotrophic protists, based on their behaviour, is proposed, dividing them into four groups.
2. Group A includes protists whose primary mode of nutrition is heterotrophy and where phototrophy is employed only when prey concentrations limit heterotrophic growth. In groups B, C and D phototrophy is the dominant mode of nutrition. In group B phagotrophy supplements growth when light is limiting, therefore ingestion of prey is inversely proportional to light intensity; in group C phagotrophy provides essential substances for growth and ingestion is proportional to light intensity; and group D includes those who have very low ingestion rates, ingesting prey only, for example, for cell maintenance during prolonged dark periods.
3. This classification is aimed towards predicting the impact of any particular mixotrophic protist on the aquatic food web, and how this impact may vary depending on the environmental conditions. A model representation of the four groups is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号