首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gill withdrawal reflex is suppressed in sexually active Aplysia   总被引:1,自引:0,他引:1  
In Aplysia, the central nervous system and peripheral nervous system interact and form an integrated system that mediates adaptive gill withdrawal reflex behaviours evoked by tactile stimulation of the siphon. The central nervous system (CNS) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) in the mediation of these behaviours. We found that the CNS's suppressive control over the PNS was increased significantly in animals engaged in sexual activity as either a male or female. In control animals, the evoked gill withdrawal reflex met a minimal response amplitude criterion, while in sexually active animals the reflex did not meet this criterion. At the neuronal level, the increased CNS suppressive control was manifested as a decrease in excitatory input to the central gill motor neurons.  相似文献   

2.
We have studied the effects of dopamine on the gill withdrawal reflex evoked by tactile siphon stimulation in the margine mollusc Aplysia. Physiological concentrations of dopamine (diluted in seawater) were perfused through the gill during siphon stimulation series. The amplitude of the reflex was potentiated by dopamine and habituation of the reflex was prevented. This occurred with no change in the activity evoked in central motor neurons. These results lead us to conclude that the dopaminergic motor neuron L9 is modulating habituation in the periphery and that the central nervous system facilitatory control of the peripheral nervous system may act via a dopaminergic pathway.  相似文献   

3.
Summary The basic organization of sensory projections in the suboesophageal central nervous system of a spider (Cupiennius salei Keys.) was analyzed with anterograde cobalt fills and a modified Golgi rapid method. The projections of three lyriform slit sense organs and of tactile hairs located proximally on the legs are described and related to central nerve tracts. There are five main longitudinal sensory tracts in the central region of the suboesophageal nervous mass arranged one above the other. Whereas the three dorsal ones contain fibers from the lyriform organs, the two ventral ones contain axons from the hair receptors. Axons from all three lyriform organs have typical shapes and widely arborizing ipsilateral intersegmental branches and a few contralateral ones. The terminal branches of the afferent projections from identical lyriform organs on each leg form characteristic longitudinal pathways, typical of each organ: U-shaped, O-shaped, or two parallel bundles. The terminations of the hair sensilla are ipsilateral and intersegmental. Two large bilaterally arranged longitudinal sensory association tracts receive inputs from all legs including the dense arborizations from tactile hairs, lyriform organs, and other sense organs. These tracts may serve as important integrating neuropils of the suboesophageal central nervous system.  相似文献   

4.
The somatosensory system is vulnerable to large amounts of noise distortion. But how does the central nervous system distinguish the peripheral inputs which carry information to the brain from that which does not possess information? To address this question we studied the effect of electrical stimulation of the median nerve on tactile spatial frequency perception in healthy subjects and Parkinson's disease (PD) patients. Subjects were categorized in two groups (healthy and PD patients) and were asked to report if a test tactile frequency pattern (TFP) was the same as the reference TFP given to the other hand. In each case stimulation was either present or absent on the median nerve of the hand holding the test pattern. We observed no impairment of tactile performance in the presence of electrical stimulation of the median nerve. This result together with previous work on direct stimulation of the somatosensory relay nucleus of the thalamus in which the same result of no impairment of the tactile discrimination task was observed suggest a high degree of noise tolerance exists in the somatosensory pathway.  相似文献   

5.
Vibrissae or follicle-sinus complexes (F-SCs) are highly developed mammalian sensory structures. These blood-filled sinuses are richly innervated and possess novel mechanoreceptors. Although much is known regarding the function of F-SCs in terrestrial mammals, much less is known regarding marine carnivores such as pinnipeds. Pinnipeds possess the largest, most highly innervated vibrissae of any mammal. One such pinniped is the California sea lion, which are generalist marine predators that rely heavily upon tactile discrimination capabilities. Psychophysical studies demonstrate that haptic tactile discrimination using F-SCs is exceptionally sensitive. However, our knowledge of the structure and function of F-SCs in otariids is limited. Our objectives were to investigate the innervation and microstructure of F-SCs across the mystacial vibrissal field and infer function from haptic performance studies in California sea lions. Innervation and microstructure of vibrissae differed considerably compared to similar data available for phocids. Total innervation of mystacial vibrissae was estimated to be 86,042 axons. Investigations of innervation density and investment of microvibrissae versus macrovibrissae demonstrated a significantly increased axon density per F-SC in medial microvibrissal regions compared to lateral macrovibrissae, which supports psychophysical data and somatotopic organization of the central nervous system involved with tactile discrimination capability. Innervation increased from medial microvibrissae (705 ± 125 axons/F-SC) to lateral macrovibrissae (1,447 ± 154) as well as from dorsal (541 ± 60) to ventral (1,493 ± 327) vibrissal regions. These data provide a more complete picture of the sensory ecology of this important aquatic mammalian lineage; the specialization of peripheral sensory structures, central nervous structures with demonstrated enhanced haptic capabilities behaviorally has likely led to the ecological success of California sea lions.  相似文献   

6.
Tactile sensation is rich and varied, requiring input from a variety of mechanoreceptors whose spatiotemporal aspects deserve careful study. Recent data for virtually every class of sensitive mechanoreceptor have revealed spatial inhomogeneities in sensitivity reflecting the distribution of sense organ terminals and the complexity of gradients in the complex spatial organization of receptive fields. Controlled surface parallel stimulation provides a means for examining sensitivity in a manner that may shed light on active tactile exploration and allow quantitative analysis of orientation, direction, and velocity properties underlying some aspects of feature extraction by the central nervous system.  相似文献   

7.
8.
The somatosensory system is vulnerable to large amounts of noise distortion. But how does the central nervous system distinguish the peripheral inputs which carry information to the brain from that which does not possess information? To address this question we studied the effect of electrical stimulation of the median nerve on tactile spatial frequency perception in healthy subjects and Parkinson's disease (PD) patients. Subjects were categorized in two groups (healthy and PD patients) and were asked to report if a test tactile frequency pattern (TFP) was the same as the reference TFP given to the other hand. In each case stimulation was either present or absent on the median nerve of the hand holding the test pattern. We observed no impairment of tactile performance in the presence of electrical stimulation of the median nerve. This result together with previous work on direct stimulation of the somatosensory relay nucleus of the thalamus (Abbassian et al., Stereotact Funct Neurosurg 76: 19–28, 2001) in which the same result of no impairment of the tactile discrimination task was observed suggest a high degree of noise tolerance exists in the somatosensory pathway.  相似文献   

9.
When stimulated either acoustically or tactually, certain species of arctiid moths rhythmically emit trains of clicks from metathoracic tymbals. The purpose of the experiments presented here was to determine the location within the central nervous system (CNS) of the proposed tymbal central pattern generator (CPG) in Cycnia tenera. Motor neuron impulses that underlie tymbal activation were recorded extracellularly from the tymbal nerve while moths were subjected to selective severing of the suboesophageal, prothoracic, pterothoracic and abdominal ganglia connectives. Motor output evoked by either acoustic or tactile stimulation originates from a common CPG because tymbal nerve spikes in both cases are similar in amplitude, waveform and rhythmicity. Our results showed: (1) removal of the CNS posterior of the second abdominal neuromere had no effect, (2) removal of the head decreased the responsiveness of the animal to acoustic stimulation and, (3) severing the connectives between the prothoracic and pterothoracic ganglia abolished responses to acoustic stimuli and diminished responses to tactile stimuli. We conclude that although the minimal circuitry sufficient for activating the tymbals resides in the pterothoracic ganglion, the prothoracic and cephalic ganglia are required for the normal, and in particular, auditory-evoked operation of the tymbal CPG.Abbreviations ASR acoustic startle response - CNS central nervous system - CPG central pattern generator - dB peSPL decibel peak equivalent sound pressure level (rms re 20 Pa) - ISI inter-spike interval  相似文献   

10.
In recent years significant progress has been made in the analysis of the cellular mechanisms underlying appetitive learning in two invertebrate species, the pond snail Lymnaea stagnalis and the honeybee Apis mellifera. In Lymnaea, both chemical (taste) and tactile appetitive conditioning paradigms were used and cellular traces of behavioural classical conditioning were recorded at several specific sites in the nervous system. These sites included sensory pathways, central pattern generator and modulatory interneurones as well as motoneurones of the feeding network. In the honeybee, a chemical (odour) appetitive conditioning paradigm resulted in cellular changes at different sites in the nervous system. In both the pond snail and the honeybee the activation of identified modulatory interneurones could substitute for the use of the chemical unconditioned stimulus, making these paradigms even more amenable to more detailed cellular and molecular analysis.  相似文献   

11.
Kuner R 《Nature medicine》2010,16(11):1258-1266
Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.  相似文献   

12.
The mechanism of acupuncture, whilst not known with certainty, has previously been considered to be stimulatory. A novel hypothesis is presented here in which C fiber tactile afferent axons bifurcate at acupuncture points and then diverge, running along acupuncture meridians, to subsequently communicate with Merkel cells. It is proposed that acupuncture disrupts the bifurcation of these axons, preventing neural transmission between Merkel cells as well as central communication with the spinal cord. Making use of the known phenomenon that acupuncture points have lower electrical resistance than adjacent skin, this hypothesis was tested using an electrical circuit model and successfully predicted the observed 103 reduction in skin resistance at acupuncture points. In addition to explaining acupuncture and the roles of both Merkel cells and C fiber tactile afferents, the model has greater implications for neuroscience, through the postulation of a new division of the autonomic nervous system.  相似文献   

13.
Zelic G  Mottet D  Lagarde J 《PloS one》2012,7(2):e32308
Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler''s performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception.  相似文献   

14.
Histochemical and indirect immunocytochemical techniques were used to search for neuroactive substances and transmitter candidates in identified sensory neurons of two types of cuticular mechanoreceptors in the spider Cupiennius salei Keys.: (1) in lyriform slit-sense organ VS-3 (comprising 7-8 cuticular slits each innervated by 2 bipolar neurons), and (2) in tactile hairs (each supplied by 3 bipolar sensory cells). All neurons are mechanosensitive. A polyclonal antibody against choline acetyltransferase (ChAT) strongly labeled all cell bodies and afferent fibers of both mechanoreceptor types. Western blot analysis using the same antibody against samples of spider sensory hypodermis and against samples from the central nervous system demonstrated a clear band at 65 kDa, corresponding to the molecular mass of ChAT in insects. Moreover, staining for acetylcholine esterase (AChE) revealed AChE activity in one neuron of each mechanoreceptor type. Incubation with a polyclonal antibody against histamine clearly labeled one neuron in each set of sensilla, whereas activity in the remaining one or two cells was near background. All mechanoreceptor preparations treated with a polyclonal antiserum against serotonin tested negative, whereas sections through the central nervous system of the same spiders were clearly labeled for serotonin. The presence of ChAT-like immunoreactivity and AChE implicates acetylcholine as a transmitter candidate in the two mechanoreceptive organs. We assume that histamine serves as a mechanosensory co-transmitter in the central nervous system and may also act at peripheral synapses that exist in these sensilla. Received: 15 July 1996 / Accepted: 26 August 1996  相似文献   

15.
The peripheral axons of vertebrate tactile somatosensory neurons travel long distances from ganglia just outside the central nervous system to the skin. Once in the skin these axons form elaborate terminals whose organization must be regionally patterned to detect and accurately localize different kinds of touch stimuli. This review describes key studies that identified choice points for somatosensory axon growth cones and the extrinsic molecular cues that function at each of those steps. While much has been learned in the past 20 years about the guidance of these axons, there is still much to be learned about how the peripheral axons of different kinds of somatosensory neurons adopt different trajectories and form specific terminal structures.  相似文献   

16.
动物感觉输入的适应性影响了它们对外界环境改变的意识和反应.感觉通路各层次,诸如感受器、传入神经和中枢系统等,反应活性的降低可能与感觉适应性相关联.在感觉适应过程中,皮层局部网络中神经元和星形胶质细胞对信号的编程机制仍有待进一步研究.利用活体双光子成像、电生理记录即药理学方法,我们分析了小鼠barrel皮层神经元和星形胶质应答重复的胡须感觉输入动力学.相同特征的胡须感觉刺激诱发了神经元和星形胶质细胞反应活性的降低,并且它们的活动在空间上和时间上去同步化,神经元和星形胶质细胞之间的缺少协调性.这种神经元和星形胶质细胞功能在空间和时间性质上的下调被局部施加AMPA受体脱敏感抑制剂所逆转.因此,在胡须感觉适应过程中,barrel皮层神经元和星形胶质细胞反应活性的下降和去同步化是由AMPA受体脱敏感参与介导完成的.  相似文献   

17.
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs [1], [2] and [3]. Motor control in the octopus nervous system is hierarchically organized [4] and [5]. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms [6], [7], [8] and [9] and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers—the basal lobes—thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.  相似文献   

18.
Mutations in the genes for components of the dynein-dynactin complex disrupt axon path finding and synaptogenesis during metamorphosis in the Drosophila central nervous system. In order to better understand the functions of this retrograde motor in nervous system assembly, we analyzed the path finding and arborization of sensory axons during metamorphosis in wild-type and mutant backgrounds. In wild-type specimens the sensory axons first reach the CNS 6-12 h after puparium formation and elaborate their terminal arborizations over the next 48 h. In Glued1 and Cytoplasmic dynein light chain mutants, proprioceptive and tactile axons arrive at the CNS on time but exhibit defects in terminal arborizations that increase in severity up to 48 h after puparium formation. The results show that axon growth occurs on schedule in these mutants but the final process of terminal branching, synaptogenesis, and stabilization of these sensory axons requires the dynein-dynactin complex. Since this complex functions as a retrograde motor, we suggest that a retrograde signal needs to be transported to the nucleus for the proper termination of some sensory neurons.  相似文献   

19.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

20.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号