首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solventogenic clostridia, a group of important industrial microorganisms, have exceptional substrate and product diversity, capable of producing a series of two-carbon and even long-chain chemicals and fuels by using various substrates, including sugars, cellulose and hemicellulose, and C1 gases. For the sake of in-depth understanding and engineering these anaerobic microorganisms for broader applications, studies on metabolic regulation of solventogenic clostridia had been extensively carried out during the past ten years, based on the rapid development of various genetic tools. To date, a number of regulators that are essential for cell physiological and metabolic processes have been identified in clostridia, and the relevant mechanisms have also been dissected, providing a wealth of valuable information for metabolic engineering. Here, we reviewed the latest research progresses on the metabolic regulation for chemical production and substrate utilization in solventogenic clostridia, by focusing on three typical Clostridium species, the saccharolytic C. acetobutylicum and C. beijerinckii, as well as the gas-fermenting C. ljungdahlii. On this basis, future directions in the study and remodeling of clostridial regulation systems, were proposed for effective modification of these industrially important anaerobes.  相似文献   

2.
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.  相似文献   

3.
Gene duplication is postulated to have played a major role in the evolution of biological novelty. Here, gene duplication is examined across levels of biological organization in an attempt to create a unified picture of the mechanistic process by which gene duplication can have played a role in generating biodiversity. Neofunctionalization and subfunctionalization have been proposed as important processes driving the retention of duplicate genes. These models have foundations in population genetic theory, which is now being refined by explicit consideration of the structural constraints placed upon genes encoding proteins through physical chemistry. Further, such models can be examined in the context of comparative genomics, where an integration of gene-level evolution and species-level evolution allows an assessment of the frequency of duplication and the fate of duplicate genes. This process, of course, is dependent upon the biochemical role that duplicated genes play in biological systems, which is in turn dependent upon the mechanism of duplication: whole genome duplication involving a co-duplication of interacting partners vs. single gene duplication. Lastly, the role that these processes may have played in driving speciation is examined.  相似文献   

4.
Metabolomics, pathway regulation, and pathway discovery   总被引:1,自引:0,他引:1  
Metabolomics is a data-based research strategy, the aims of which are to identify biomarker pictures of metabolic systems and metabolic perturbations and to formulate hypotheses to be tested. It involves the assay by mass spectrometry or NMR of many metabolites present in the biological system investigated. In this minireview, we outline studies in which metabolomics led to useful biomarkers of metabolic processes. We also illustrate how the discovery potential of metabolomics is enhanced by associating it with stable isotopic techniques.  相似文献   

5.
卢亚兰  唐标  杨华  孙东昌 《微生物学报》2022,62(4):1308-1321
原核生物可利用由CRISPR-Cas系统(clustered regularly interspaced short palindromic repeats-CRISPR associated)介导的适应性免疫机制防御外源核酸入侵.在适应性免疫过程中,原核生物将外源核酸部分片段整合至自身CRISPR阵列中,表达并加工的...  相似文献   

6.
Alexander disease is a primary disorder of astrocytes caused by gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), which lead to protein aggregation and a reactive astrocyte response, with devastating effects on the central nervous system. Over the past two decades since the discovery of GFAP as the culprit, several cellular and animal models have been generated, and much has been learned about underlying mechanisms contributing to the disease. Despite these efforts, many aspects of Alexander disease have remained enigmatic, particularly the initiating events in GFAP accumulation and astrocyte pathology, the relation between astrocyte dysfunction and myelin deficits, and the variability in age of onset and disease severity. More recent work in both old and new models has begun to address these complex questions and identify new therapeutics that finally offer the promise of effective treatment.  相似文献   

7.
8.
Recent studies have provided important information concerning the neural signals that subserve vocal learning in songbirds: advanced signal processing techniques are beginning to clarify the behavioral trajectories followed by developing birds; single-unit physiology in behaving animals is providing important clues about sensory and motor representations during learning; in vitro whole-cell recordings are revealing patterns of synaptic communication; and experimental alterations in song behavior have advanced our understanding of specific structure-function relationships. The construction of theoretical and computational models will be crucial in integrating such disparate experimental results.  相似文献   

9.
10.
Brain insulin: regulation,mechanisms of action and functions   总被引:12,自引:0,他引:12  
1. While many questions remain unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease.2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition.3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system.4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas.5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melanocortins, and neuropeptide Y (NPY) is suggested.6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.  相似文献   

11.
Reverse engineering: the architecture of biological networks   总被引:1,自引:0,他引:1  
Khammash M 《BioTechniques》2008,44(3):323-329
We adopt a control theory approach to reverse engineer the complexity of a known system--the bacterial heat shock response. Using a computational dynamic model, we explore the organization of the heat shock system and elucidate its various regulation strategies. We show that these strategies are behind much of the complexity of the network. We propose that complexity is a necessary outcome of robustness and performance requirements that are achieved by the heat shock system's exquisite regulation modules. The techniques we use rely on dynamic computational models and principles from the field of control theory.  相似文献   

12.
Borst A  Euler T 《Neuron》2011,71(6):974-994
Motion vision provides essential cues for navigation and course control as well as for mate, prey, or predator detection. Consequently, neurons responding to visual motion in a direction-selective way are found in almost all species that see. However, directional information is not explicitly encoded at the level of a single photoreceptor. Rather, it has to be computed from the spatio-temporal excitation level of at least two photoreceptors. How this computation is done and how this computation is implemented in terms of neural circuitry and membrane biophysics have remained the focus of intense research over many decades. Here, we review recent progress made in this area with an emphasis on insects and the vertebrate retina.  相似文献   

13.
Kirfel G  Herzog V 《Protoplasma》2004,223(2-4):67-78
Summary. Keratinocytes are the prevalent cell type of the epidermis, a multilayered cornified epithelium which provides the cellular basis of the outermost barrier between the organism and its environment. By this barrier function the epidermis protects the organism against a variety of environmental hazards such as dehydration and mechanical stress. Under normal conditions, keratinocytes of all layers are interconnected by desmosomes and anchored by hemidesmosomes to a specialised type of extracellular matrix, the basement membrane. When the epidermis is injured, a vitally important response is initiated with the aim to restore the protective function of the epithelium. A fast but provisional sealing is achieved by the deposition of the fibrin clot before within 24 h after wounding keratinocytes from the wound margins begin to migrate into the wound bed, where they start to proliferate and to form the new epithelium. The development of new high-resolution assays for the study of cell migration and motility has potentiated major progress in our understanding of keratinocyte migration in vitro and in situ. The data reviewed here point to a sophisticated cooperation between soluble motogenic growth factors, cell–matrix interactions, and cell-to-cell communications as major parts of the machinery regulating keratinocyte migration.Correspondence and reprints: Institut für Zellbiologie, Universität Bonn, Ulrich-Haberland-Strasse 61a. 53121 Bonn. Federal Republic of Germany.  相似文献   

14.
15.
Inferring metabolic networks from metabolite concentration data is a central topic in systems biology. Mathematical techniques to extract information about the network from data have been proposed in the literature. This paper presents a critical assessment of the feasibility of reverse engineering of metabolic networks, illustrated with a selection of methods. Appropriate data are simulated to study the performance of four representative methods. An overview of sampling and measurement methods currently in use for generating time-resolved metabolomics data is given and contrasted with the needs of the discussed reverse engineering methods. The results of this assessment show that if full inference of a real-world metabolic network is the goal there is a large discrepancy between the requirements of reverse engineering of metabolic networks and contemporary measurement practice. Recommendations for improved time-resolved experimental designs are given.  相似文献   

16.
Antibodies are essential in modern life sciences biotechnology. Their architecture and diversity allow for high specificity and affinity to a wide array of biochemicals. Combining monoclonal antibody (mAb) technology with recombinant DNA and protein expression links antibody genotype with phenotype. Yet, the ability to select and screen for high affinity binders from recombinantly-displayed, combinatorial libraries unleashes the true power of mAbs and a flood of clinical applications. The identification of novel antibodies can be accomplished by a myriad of in vitro display technologies from the proven (e.g. phage) to the emerging (e.g. mammalian cell and cell-free) based on affinity binding as well as function. Lead candidates can be further engineered for increased affinity and half-life, reduced immunogenicity and/or enhanced manufacturing, and storage capabilities. This review begins with antibody biology and how the structure and genetic machinery relate to function, diversity, and in vivo affinity maturation and follows with the general requirements of (therapeutic) antibody discovery and engineering with an emphasis on in vitro display technologies. Throughout, we highlight where antibody biology inspires technology development and where high-throughput, “big data” and in silico strategies are playing an increasing role. Antibodies dominate the growing class of targeted therapeutics, alone or as bioconjugates. However, their versatility extends to research, diagnostics, and beyond.  相似文献   

17.
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3′ single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3′ overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.  相似文献   

18.
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.  相似文献   

19.
Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.  相似文献   

20.
Large numbers of publications investigating the molecular details, the regulation and the physiological roles of autophagic processes have appeared over the last few years, dealing with animals, plants and unicellular eukaryotic organisms. This strong interest is caused by the fact that autophagic processes are ubiquitous in eukaryotic organisms. They are involved in the adaptation of organisms to their environment and to stressful conditions, thereby contributing to cell and organism survival and longevity. This review article aims to describe the discovery of autophagy, the molecular details of this complex process, its regulation, and its specific functions in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号