首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-heme manganese catalases are widely distributed over microbial life and represent an environmentally important alternative to heme-containing catalases in antioxidant defense. Manganese catalases contain a binuclear manganese complex as their catalytic active site rather than a heme, and cycle between Mn(2)(II,II) and Mn(2)(III,III) states during turnover. X-ray crystallography has revealed the key structural elements of the binuclear manganese active site complex that can serve as the starting point for computational studies on the protein. Four manganese catalase enzymes have been isolated and characterized, and the enzyme appears to have a broad phylogenetic distribution including both bacteria and archae. More than 100 manganese catalase genes have been annotated in genomic databases, although the assignment of many of these putative manganese catalases needs to be experimentally verified. Iron limitation, exposure to low levels of peroxide stress, thermostability and cyanide resistance may provide the biological and environmental context for the occurrence of manganese catalases.  相似文献   

2.
Fungal catalases: Function, phylogenetic origin and structure   总被引:1,自引:0,他引:1  
Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack a peroxisomal catalase. Catalases have a deep buried active site and H(2)O(2) has to go through a long passage to reach it. In all known structures of catalases, the major channel has common features, particularly in the straight and narrow final section that is positioned perpendicular to the heme. Besides, other conserved channels are present in catalases whose function remains to be elucidated. One of these channels intercommunicates the major channels from the two R-related subunits. In three of the four known large-subunits catalase structures, the heme b is partially transformed into heme d. In Neurospora crassa, this occurs in vivo and is related to oxidative stress conditions in which singlet oxygen is produced. A pure source of singlet oxygen oxidizes catalases purified from different sources and singlet oxygen quenchers prevent oxidation. A second modification is observed in N. crassa catalase-1, in which the tyrosine that forms the fifth coordination bound to the heme iron makes a covalent bond with a vicinal cysteine, similarly to the tyrosine-histidine bonding found in Escherichia coli hydroperoxidase II. Molecular dynamics has been used to determine how H(2)O(2) reaches the enzyme active site and how products exit the protein. We found that the bottleneck of the major channel seems to disappear in water and is wide open in the presence of substrate. Amino acid residues exhibiting an increased residence time for H(2)O(2) are abundant at the protein surface and at the entrances to the major channel. The net effect of this is an increased H(2)O(2)/H(2)O ratio in the major channel. Once in the final section of this channel, H(2)O(2) is retained and tends to occupy specific sites while water molecules have a higher turnover rate and occupy different sites. Despite the intense study of catalases our knowledge of this enzyme is still limited and in need of new studies and different approaches.  相似文献   

3.
Heme catalases are homotetrameric enzymes with a highly conserved complex quaternary structure, and their functional role is still not well understood. Proteus mirabilis catalase (PMC), a heme enzyme belonging to the family of NADPH-binding catalases, was efficiently overexpressed in E. coli. The recombinant catalase (rec PMC) was deficient in heme with one-third heme and two-thirds protoporphyrin IX as determined by mass spectrometry and chemical methods. This ratio was influenced by the expression conditions, but the enzyme-specific activity calculated relative to the heme content remained unchanged. The crystal structure of rec PMC was solved to a resolution of 2.0 A, the highest resolution obtained to date with PMC. The overall structure was quite similar to that of wild-type PMC, and it is surprising that the absence of iron had no effect on the structure of the active site. Met 53 close to the essential His 54 was found less oxidized in rec PMC than in the wild-type enzyme. An acetate anion was modeled in an anionic pocket, away from the heme group but important for the enzymatic reaction. An alternate conformation observed for Arg 99 could play a role in the formation of the H-bond network connecting two symmetrical subunits of the tetramer.  相似文献   

4.
Heme-containing catalases have been extensively studied, revealing the roles of many residues, the existence of two heme orientations, flipped 180° relative to one another along the propionate-vinyl axis, and the presence of both heme b and heme d. The focus of this report is a residue, situated adjacent to the vinyl groups of the heme at the entrance of the lateral channel, with an unusual main chain geometry that is conserved in all catalase structures so far determined. In Escherichia coli catalase HPII, the residue is Ile274, and replacing it with Gly, Ala, and Val, found at the same location in other catalases, results in a reduction in catalytic efficiency, a reduced intensity of the Soret absorbance band, and a mixture of heme orientations and species. The reduced turnover rates and higher H(2)O(2) concentrations required to attain equivalent reaction velocities are explained in terms of less efficient containment of substrate H(2)O(2) in the heme cavity arising from easier escape through the more open entrance to the lateral channel created by the smaller side chains of Gly and Ala. Inserting a Cys at position 274 resulted in the heme being covalently linked to the protein through a Cys-vinyl bond that is hypersensitive to X-ray irradiation being largely degraded within seconds of exposure to the X-ray beam. Two heme orientations, flipped along the propionate-vinyl axis, are found in the Ala, Val, and Cys variants.  相似文献   

5.
The morphogenetic transitions of the N. crassa asexual life cycle are responses to a hyperoxidant state in which probably singlet oxygen is generated. Induction of catalase activity and catalase oxidation by singlet oxygen are consequences of this recurrent hyperoxidant state. Here the biochemical properties and regulation of two large monofunctional catalases are reviewed, and a new catalase-peroxidase gene and activity is described. Catalase-3 is associated to growing and Catalase-1 to non-growing cells. Under stressful conditions one of these catalases is synthesized, depending on whether growth can be continued or a resistant cell has to be made. The catalase-peroxidase Catalase-2 was possibly derived from a bacterial enzyme. In contrast to the other catalases, Catalase-2 had catalase and peroxidase activity. Catalase-2 was expressed under conditions in which vacuolization of hyphae is observed. All three enzymes have a chlorin in its active site instead of ferroprotoheme IX and are resistant to molar concentrations of hydrogen peroxide. These and all other catalases tested so far are oxidized by singlet oxygen, probably at the heme moiety. The catalase activity is virtually unaffected by oxidation, but the enzymes are probably degraded more rapidly than the unmodified ones.  相似文献   

6.
For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants.  相似文献   

7.
Comparison of beef liver and Penicillium vitale catalases   总被引:4,自引:0,他引:4  
The structures of Penicillium vitale and beef liver catalase have been determined to atomic resolution. Both catalases are tetrameric proteins with deeply buried heme groups. The amino acid sequence of beef liver catalase is known and contains (at least) 506 amino acid residues. Although the sequence of P. vitale catalase has not yet been determined chemically, 670 residues have been built into the 2 A resolution electron density map and have been given tentative assignments. A large portion of each catalase molecule (91% of residues in beef liver catalase and 68% of residues in P. vitale catalase) shows structural homology. The root-mean-square deviation between 458 equivalenced C alpha atoms is 1.17 A. The dissimilar parts include a small fragment of the N-terminal arm and an additional "flavodoxin-like" domain at the carboxy end of the polypeptide chain of P. vitale catalase. In contrast, beef liver catalase contains one bound NADP molecule per subunit in a position equivalent to the chain region, leading to the flavodoxin-like domain, of P. vitale catalase. The position and orientation of the buried heme group in the two catalases, relative to the mutually perpendicular molecular dyad axes, are identical within experimental error. A mostly hydrophobic channel leads to the buried heme group. The surface opening to the channel differs due to the different disposition of the amino-terminal arm and the presence of the additional flavodoxin-like domain in P. vitale catalase. Possible functional implications of these comparisons are discussed.  相似文献   

8.
Catalase CatF of Pseudomonas syringae has been identified phylogenetically as a clade 1 catalase, closely related to plant catalases, a group from which no structure has been determined. The structure of CatF has been refined at 1.8 A resolution by using X-ray synchrotron data collected from a crystal flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are, respectively, 18.3% and 24.0%. The asymmetric unit of the crystal contains a whole molecule that shows accurate 222-point group symmetry. The crystallized enzyme is a homotetramer of subunits with 484 residues, some 26 residues shorter than predicted from the DNA sequence. Mass spectrometry analysis confirmed the absence of 26 N-terminal residues, possibly removed by a periplasmic transport system. The core structure of the CatF subunit was closely related to seven other catalases with root-mean-square deviations (RMSDs) of 368 core Calpha atoms of 0.99-1.30 A. The heme component of CatF is heme b in the same orientation that is found in Escherichia coli hydroperoxidase II, an orientation that is flipped 180 degrees with respect the orientation of the heme in bovine liver catalase. NADPH is not found in the structure of CatF because key residues required for nucleotide binding are missing; 2129 water molecules were refined into the model. Water occupancy in the main or perpendicular channel of CatF varied among the four subunits from two to five in the region between the heme and the conserved Asp150. A comparison of the water occupancy in this region with the same region in other catalases reveals significant differences among the catalases.  相似文献   

9.
This review gives an overview about the structural organisation of different evolutionary lines of all enzymes capable of efficient dismutation of hydrogen peroxide. Major potential applications in biotechnology and clinical medicine justify further investigations. According to structural and functional similarities catalases can be divided in three subgroups. Typical catalases are homotetrameric haem proteins. The three-dimensional structure of six representatives has been resolved to atomic resolution. The central core of each subunit reveals a characteristic "catalase fold", extremely well conserved among this group. In the native tetramer structure pairs of subunits tightly interact via exchange of their N-terminal arms. This pseudo-knot structures implies a highly ordered assembly pathway. A minor subgroup ("large catalases") possesses an extra flavodoxin-like C-terminal domain. A > or = 25 A long channel leads from the enzyme surface to the deeply buried active site. It enables rapid and selective diffusion of the substrates to the active center. In several catalases NADPH is tightly bound close to the surface. This cofactor may prevent and reverse the formation of compound II, an inactive reaction intermediate. Bifunctional catalase-peroxidase are haem proteins which probably arose via gene duplication of an ancestral peroxidase gene. No detailed structural information is currently available. Even less is know about manganese catalases. Their di-manganese reaction centers may be evolutionary.  相似文献   

10.
Substrate H2O2 must gain access to the deeply buried active site of catalases through channels of 30-50 A in length. The most prominent or main channel approaches the active site perpendicular to the plane of the heme and contains a number of residues that are conserved in all catalases. Changes in Val169, 8 A from the heme in catalase HPII from Escherichia coli, introducing smaller, larger or polar side chains reduces the catalase activity. Changes in Asp181, 12 A from the heme, reduces activity by up to 90% if the negatively charged side chain is removed when Ala, Gln, Ser, Asn, or Ile are the substituted residues. Only the D181E variant retains wild type activity. Determination of the crystal structures of the Glu181, Ala181, Ser181, and Gln181 variants of HPII reveals lower water occupancy in the main channel of the less active variants, particularly at the position forming the sixth ligand to the heme iron and in the hydrophobic, constricted region adjacent to Val169. It is proposed that an electrical potential exists between the negatively charged aspartate (or glutamate) side chain at position 181 and the positively charged heme iron 12 A distant. The potential field acts upon the electrical dipoles of water generating a common orientation that favors hydrogen bond formation and promotes interaction with the heme iron. Substrate hydrogen peroxide would be affected similarly and would enter the active site oriented optimally for interaction with active site residues.  相似文献   

11.
Resonance Raman spectra are reported for catalases from bovine liver, the ascomycete fungus Aspergillus niger, and the bacterium Micrococcus luteus. The vibrational frequencies of the oxidation-, spin-, and coordination number-sensitive spectral bands are indicative of high spin pentacoordinate hemes in the resting ferric enzymes of each of these organisms. This result is in accord with the crystal structure of bovine catalase (Fita, I., and Rossmann, M.G. (1985) J. Mol. Biol. 185, 21-37). In contrast, the crystallographic study of catalase from the ascomycete Penicillium vitale (Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A.A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I., and Rossmann, M. G. (1986) J. Mol. Biol. 188, 49-61) showed electron density on the distal side of the heme which could imply the presence of a sixth ligand, possibly a water molecule. However, both of these crystallographic studies showed the proximal ligand in catalase to be a tyrosine. The present study confirms tyrosinate coordination in each of the three catalases from the appearance of selected resonance-enhanced tyrosine vibrational modes. The most characteristic band is the tyrosinate ring mode at approximately 1612 cm-1 which is maximally enhanced with 488.0 nm excitation. The appearance of tyrosinate modes at 1607 and 1245 cm-1 in the resonance Raman spectra of M. luteus cyano catalase serves to identify tyrosine as an axial ligand in bacterial as well as eukaryotic catalases. Unlike non-heme iron tyrosinate proteins, whose resonance Raman spectra are dominated by several intense bands diagnostic of tyrosine ligation, the heme-linked tyrosine modes are not easily distinguished from the large number of porphyrin vibrations.  相似文献   

12.
BACKGROUND: Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Two families of catalases are known, one having a heme cofactor, and the other, a structurally distinct family containing nonheme manganese. We have solved the structure of the mesophilic manganese catalase from Lactobacillus plantarum and its azide-inhibited complex. RESULTS: The crystal structure of the native enzyme has been solved at 1.8 A resolution by molecular replacement, and the azide complex of the native protein has been solved at 1.4 A resolution. The hexameric structure of the holoenzyme is stabilized by extensive intersubunit contacts, including a beta zipper and a structural calcium ion crosslinking neighboring subunits. Each subunit contains a dimanganese active site, accessed by a single substrate channel lined by charged residues. The manganese ions are linked by a mu1,3-bridging glutamate carboxylate and two mu-bridging solvent oxygens that electronically couple the metal centers. The active site region includes two residues (Arg147 and Glu178) that appear to be unique to the Lactobacillus plantarum catalase. CONCLUSIONS: A comparison of L. plantarum and T. thermophilus catalase structures reveals the existence of two distinct structural classes, differing in monomer design and the organization of their active sites, within the manganese catalase family. These differences have important implications for catalysis and may reflect distinct biological functions for the two enzymes, with the L. plantarum enzyme serving as a catalase, while the T. thermophilus enzyme may function as a catalase/peroxidase.  相似文献   

13.
Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H2O2) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H2O2 to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-γ-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H2O2 concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.  相似文献   

14.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The dissociation of beef liver and bacterial (Micrococcus lysodeikticus) catalases by the action of sodium n-dodecyl sulfate (SDS) has been investigated as a function of SDS concetration and time by ultracentrifugation. The rate of dissociation of beef liver catalase is found to be much faster than that for bacterial catalase in 25 mM SDS at pH 7.0. Beef liver catalase is dissociated into its four subunits after 24 h, whereas bacterial catalase is not completely dissociated after 36 days of incubation. The binding of SDS to beef liver catalase obeys a Hill equation with a cooperativity exponent of 2.0 and a binding constant of 440. The initial interaction of SDS with beef liver catalase can be detected by microcalorimetry, whereas the mixing of SDS with bacterial catalase is athermal. Bacterial catalase retains enzymic activity in the presence of SDS, whereas beef liver catalase is completely deactivated at SDS concentrations above 5 mM. Beef liver catalase is more sensitive to acid denaturation than bacterial catalase, and the rate of dissociation for both catalases is sixth-order in proton concentration. Comparison of the amino acid analysis of the two catalases shows that bacterial catalase has a smaller number of lysyl residues and a larger number of glutamyl residues than beef liver catalase. Taken together these structural differences could lead to a reduced affinity of bacterial catalase for the binding of SDS as observed.  相似文献   

16.
The nucleotide sequence of a 2785-base-pair stretch of DNA containing the Saccharomyces cerevisiae catalase A (CTA1) gene has been determined. This gene contains an uninterrupted open reading frame encoding a protein of 515 amino acids (relative molecular mass 58,490). Catalase A, the peroxisomal catalase of S. cerevisiae was compared to the peroxisomal catalases from bovine liver and from Candida tropicalis and to the non-peroxisomal, presumably cytoplasmic, catalase T of S. cerevisiae. Whereas the peroxisomal catalases are almost colinear, three major insertions have to be introduced in the catalase T sequence to obtain an optimal fit with the other proteins. Catalase A is most closely related to the C. tropicalis enzyme. It is also more similar to the bovine liver catalase than to the second S. cerevisiae catalase. The differences between the two S. cerevisiae enzymes are most striking within four blocks of amino acids consisting of a total of 37 residues with high homology between the three peroxisomal, but low conservation between the S. cerevisiae catalases. The results obtained indicate that the peroxisomal catalases compared have very similar three-dimensional structures and might have similar targeting signals.  相似文献   

17.
Helicobacter pylori produces one monofunctional catalase, encoded by katA (hp0875). The crystal structure of H. pylori catalase (HPC) has been determined and refined at 1.6 A with crystallographic agreement factors R and R(free) of 17.4 and 21.9%, respectively. The crystal exhibits P2(1)2(1)2 space group symmetry and contains two protein subunits in the asymmetric unit. The core structure of the HPC subunit, including the disposition of a heme b prosthetic group, is closely related to those of other catalases, although it appears to be the only clade III catalase that has been characterized that does not bind NADPH. The heme iron in one subunit of the native enzyme appears to be covalently modified, possibly with a perhydroxy or dioxygen group in a compound III-like structure. Formic acid is known to bind in the active site of catalases, promoting the breakdown of reaction intermediates compound I and compound II. The structure of an HPC crystal soaked with sodium formate at pH 5.6 has also been determined to 1.6 A (with R and R(free) values of 18.1 and 20.7%, respectively), revealing at least 36 separate formate or formic acid residues in the HPC dimer. In turn, the number of water molecules refined into the models decreased from 1016 in the native enzyme to 938 in the formate-treated enzyme. Extra density, interpreted as azide, is found in a location of both structures that involves interaction with all four subunits in the tetramer. Electron paramagnetic resonance spectra confirm that azide does not bind as a ligand of the iron and that formate does bind in the heme pocket. The stability of the formate or formic acid molecule found inside the heme distal pocket has been investigated by calculations based on density functional theory.  相似文献   

18.
We had previously isolated a facultatively anaerobic hyperthermophilic archaeon, Pyrobaculum calidifontis strain VA1. Here, we found that strain VA1, when grown under aerobic conditions, harbors high catalase activity. The catalase was purified 91-fold from crude extracts and displayed a specific activity of 23,500 U/mg at 70 degrees C. The enzyme exhibited a K(m) value of 170 mM toward H(2)O(2) and a k(cat) value of 2.9 x 10(4) s(-1).subunit(-1) at 25 degrees C. Gel filtration chromatography indicated that the enzyme was a homotetramer with a subunit molecular mass of 33,450 Da. The purified catalase did not display the Soret band, which is an absorption band particular to heme enzymes. In contrast to typical heme catalases, the catalase was not strongly inhibited by sodium azide. Furthermore, with plasma emission spectroscopy, we found that the catalase did not contain iron but instead contained manganese. Our biochemical results indicated that the purified catalase was not a heme catalase but a manganese (nonheme) catalase, the first example in archaea. Intracellular catalase activity decreased when cells were grown anaerobically, while under aerobic conditions, an increase in activity was observed with the removal of thiosulfate from the medium, or addition of manganese. Based on the N-terminal amino acid sequence of the purified protein, we cloned and sequenced the catalase gene (kat(Pc)). The deduced amino acid sequence showed similarity with that of the manganese catalase from a thermophilic bacterium, Thermus sp. YS 8-13. Interestingly, in the complete archaeal genome sequences, no open reading frame has been assigned as a manganese catalase gene. Moreover, a homology search with the sequence of kat(Pc) revealed that no orthologue genes were present on the archaeal genomes, including those from the "aerobic" (hyper)thermophilic archaea Aeropyrum pernix, Sulfolobus solfataricus, and Sulfolobus tokodaii. Therefore, Kat(Pc) can be considered a rare example of a manganese catalase from archaea.  相似文献   

19.
The physico-chemical properties of heme-containing and non-heme catalases isolated from the cell culture of Micrococcus sp. n. grown under intensive aeration were studied. The enzyme preparations were homogenous during polyacrylamide disc electrophoresis. The spectral and functional properties of the enzymes (e. g. specific activity, subunit molecular weight, quaternary structure, amino acid composition, immunoprecipitability, N-terminal amino acid sequences) were investigated. Monocrystals of non-heme catalase applicable for an X-ray analysis were grown and examined by X-ray spectroscopy. Both enzymes were stable upon storage in 40% ammonium sulfate for 2 months and resistant to lyophylization without any significant loss of their activity. Non-heme catalase is apparently an independent enzyme which is not derived from heme-containing catalase via dissociation, limited proteolysis or heme cleavage.  相似文献   

20.
This review considers the distribution of the main enzymes of antioxidative defense, superoxide dismutase (SOD) and catalase, in various groups of strictly anaerobic microorganisms: bacteria of the genus Clostridium, Bacteroides, sulfate-reducing and acetogenic bacteria, methanogenic archaea, etc. Molecular and biochemical properties of purified Fe-containing SODs, cambialistic SODs, and heme catalases are presented. The physiological role and origin of the enzymes of antioxidative defense in strict anaerobes are discussed. Physiological responses (induction of SOD and catalase) to factors provoking oxidative stress in the cells of strict anaerobes able to maintain viability under aerobic conditions are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号