首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cardiomyocyte death caused by proinflammatory cytokines, such as Tumor necrosis factor α (TNF-α), is one of the hot topics in cardiovascular research. TNF-α can induce multiple cell processes that are dependent on the treatment time although the long-term treatment definitely leads to cell death. The ability to intervene in cell death will be invaluable to reveal the effects of short-term TNF-α treatment to cardiomyocytes. However, a real-time monitoring technique is needed to guide the intervention of cell responses. In this work, we employed the impedance-sensing technique to real-time monitor the equivalent cell–substrate distance of cardiomyocytes via electrochemical impedance spectroscopy (EIS) and electrical cell–substrate impedance sensing (ECIS). In the stabilized cardiomyocyte culture, the sustained TNF-α treatment caused strengthened cell adhesion in the first 2 h which was followed by the transition to cell detachment afterwards. Considering cell detachment was an early morphological evidence of cell death, we removed TNF-α from the cardiomyocyte culture before the transition to achieve the intervention of cell responses. The result of this intervention showed that cell adhesion was continuously strengthened before and after the removal of TNF-α, indicating the short-term treated cardiomyocytes did not undergo death processes. It was also demonstrated in TUNEL and TBE tests that the percentages of apoptosis and cell death were both lowered.  相似文献   

2.
In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27μl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100μm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4μmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During adsorption, laser scanning confocal microscopy identified locations within the adsorbent where protein adsorption and desorption occurred. The findings indicate that minimal channelling, selective product capture and near quantitative elution of the captured (adsorbed) product could be achieved, supporting the application of this new device as a high-throughput process analytical tool (PAT) for the in-process monitoring of histidine-tagged proteins in manufacturing.  相似文献   

3.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 microm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37 degrees C, 5% CO(2)). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.  相似文献   

4.
5.
In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies.  相似文献   

6.
7.
We report here a non-invasive, reversible method for interrogating single cells in a microfluidic flow-through system. Impedance spectroscopy of cells held at a micron-sized pore under negative pressure is demonstrated and used to determine the presence and viability of the captured cell. The cell capture pore is optimized for electrical response and mechanical interfacing to a cell using a deposited layer of parylene. Changes in the mechanical interface between the cell and the chip due to chemical exposure or environmental changes can also be assessed. Here, we monitored the change in adhesion/spreading of RAW264.7 macrophages in response to the immune stimulant lipopolysaccharide (LPS). This method enables selective, reversible, and quantitative long-term impedance measurements on single cells. The fully sealed electrofluidic assembly is compatible with long-term cell culturing, and could be modified to incorporate single cell lysis and subsequent intracellular separation and analysis.  相似文献   

8.
Microfluidics is a convenient platform to study the influences of fluid shear stress on calcium dynamics. Fluidic shear stress has been proven to affect bone cell functions and remodelling. We have developed a microfluidic system which can generate four shear flows in one device as a means to study cytosolic calcium concentration ([Ca2+]c) dynamics of osteoblasts. Four shear forces were achieved by having four cell culture chambers with different widths while resistance correction channels compensated for the overall resistance to allow equal flow distribution towards the chambers. Computational simulation of the local shear stress distribution highlighted the preferred section in the cell chamber to measure the calcium dynamics. Osteoblasts showed an [Ca2+]c increment proportional to the intensity of the shear stress from 0.03 to 0.30 Pa. A delay in response was observed with an activation threshold between 0.03 and 0.06 Pa. With computational modelling, our microfluidic device can offer controllable multishear stresses and perform quantitative comparisons of shear stress-induced intensity change of calcium in osteoblasts.  相似文献   

9.
Reactive oxygen species (ROS) are an important factor in the development of skin lesions in diabetes. A new antioxidant, hydrogen, can selectively neutralize hydroxyl radicals (OH) and peroxynitrite (ONOO) in cell-free systems, whereas it seldom reacts with other ROS. Fibroblasts are a key component of skin. In the present study, we investigated the protective effects of hydrogen-rich medium on human skin fibroblasts (HSFs) under oxidative stress. Confocal microscopy was used to assay both the intracellular superoxide anion () concentration and the mitochondrial membrane potential (ΔΨ). Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The concentrations of cellular malonaldehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 3-nitrotyrosine (3-NT) were also measured. The results revealed that both mannitol and high glucose could cause oxidative stress in HSFs. Interestingly, the use of a hydrogen-rich medium significantly reduced the level of intracellular , stabilized the ΔΨ and attenuated production of MDA, 8-OHdG and 3-NT which efficiently enhanced the antioxidative defense system and protected the HSFs from subsequent oxidative stress damage. In other words, hydrogen decreased the excessive generation of intracellular and elevated the cellular antioxidative defense. Based on our results, hydrogen may have applications in the treatment of skin diseases caused by diabetes.  相似文献   

10.
The activity of small experimental animals is difficult to quantify without prolonged observation and note-taking. We describe a relatively cheap and easily constructed device for monitoring and recording activity. Appropriate modifications make the basic device suitable for limited field applications.  相似文献   

11.
Plasma colloid oncotic pressure(COP) is an important determinant of interstitial oedema and relates to mortality in critically ill patients. A simple device for the routine measurement of COP has been developed which gives stable readings in less than three minutes ∼0.2 ml. of plasma. It is easy to calibrate, simple to use and has a short equilibration time.  相似文献   

12.
The circuit of a device for automatic measurement of short-circuit current in epithelia is described. Current can be passed through high-resistance salt bridges and it is possible to compensate for the effect of the resistance of the bathing solutions.  相似文献   

13.
Requirements for a point-of-care device are an easy and robust read-out and – above all – a simple handling. We integrated an established robust electrical read-out for DNA-chips into a microfluidic device, thereby creating an automated analysis system that combines the necessary steps for a chip-based analysis. It is based on the electrical detection of biotin-labeled DNA in a gap between two microstructured electrodes on the surface of a DNA-chip. The biotin serves as binding molecule for streptavidin-conjugated horseradish peroxidase. A following enzyme-induced silver deposition bridges the gap by a conductive layer. The miniaturized chip gives the possibility to realize a durable system suitable for point-of-care applications.To enable an initial automation, all corresponding process steps were executed in a miniaturized silicone flow cell. The required defined temperatures for the hybridization and the washing steps can be adjusted by a heating foil.This paper characterizes the performance of the flow cell based system in terms of reaction speed and analysis time, sensitivity as well as specificity, and the comparison to a conventional system, without flow cell. These first steps of automation and integration will help to realize a laboratory-independent bioanalytical tool, for the use outside of specialized laboratories for fast analysis of different chemical and biological applications.  相似文献   

14.
Changes in the electrical impedance of tissue can indicate structural changes. This suggests a technique for the noninvasive detection of allograft rejection after heart transplantation. The direct electrical connection to the heart and the application of a measuring current to the myocardium requires a high standard of safety. A device was developed for measuring cardiac impedance using a sinusoidal current of 20 microA at a frequency of 15 kHz. The control logic ensures a slow current onset and also an immediate cessation in case of conductor fracture or excessive voltage. Initial results in patients with normal recovery after heart transplantation revealed a rapid drop in impedance to about 70% of the initial value in the 1st 48 hours and then a stable course. In the sole rejection episode observed so far, the impedance increased again to 85% of the initial value. This paper discusses the technical safety requirements and the design of the device, and presents initial results of clinical examinations.  相似文献   

15.
We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO‐1 tight junction protein and acetylated α‐tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F‐actin and exhibited disassembly of cytosolic F‐actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC‐inulin) was measured before and after Ca2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707–716. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
A device for the rapid and accurate measurement of model molecular co-ordinates, to be used in conjunction with a Richards optical comparator, is described. The device may be operated in either a manual or automatic mode. The manual mode allows an operator to find the co-ordinates of a desired atom by optical superposition of the transmitted image of a small marker light upon the reflected image of the atom to be measured. The automatic mode allows the operator to position the marker light automatically by entering preselected co-ordinates from an electronic console. This mode of operation facilitates the rapid construction and comparison of structures the atomic co-ordinates of which are already known. The device utilizes pulsed stepping motors to position the marker light and incorporates modularized solid-state circuitry throughout. Several applications of the device are described.  相似文献   

17.
18.
For compression treatment to be effective in patients with chronic venous insufficiency, it is vital that leg circumference be measured accurately. If compression stockings are custom fit and appropriate for the medical indications, patient compliance will be high. Exact measurements of circumference and length are prerequisites for a good fit. The aim of the present study was to compare an opto-electronic device for the contact-free measurement of calf circumference with the conventional manual method using a tape measure. We investigated the differences between the results obtained with the two methods, and also their reproducibility. Circumferences were measured at defined heights on an anatomically shaped non-yielding leg model and on the leg of a healthy volunteer by 10 different experimenters both with the tape measure and with the opto-electronic device. The calf circumferences measured manually with the tape measure varied significantly more than those measured opto-electronically, both in the leg model and in the leg of the volunteer. A systematic error in the opto-electronic method appears unlikely, since the manual measurements on the leg model were both larger and smaller than those obtained with the opto-electronic device. Reproducibility was exceptionally high with the opto-electronic device (standard deviation 0.11-0.42 cm). The opto-electronic method yields rapid accurate measurements of circumference with excellent intra- and inter-operator reproducibility.  相似文献   

19.
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had previously been modified to express green fluorescent protein (GFP). In our design, the cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that local field strength of 1000-1500 V/cm was required for nearly 100% cell death. This threshold field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field [Lee, S.W., Tai, Y.C., 1999. Sens. Actuators A: Phys. 73, 74-79]. Cell lysis was detected by both plate count and fluorescence spectroscopy. The cell membrane was completely disintegrated in the lysis section of the microfluidic device, when the field strength was higher than 2000 V/cm. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of bacterial cells for chemical analysis of intracellular contents such as DNA and proteins. The application of continuous dc voltage greatly simplified the instrumentation compared to devices using electrical pulses for similar purposes. In principle, the same approach can also be applied for lysis of mammalian cells and electroporative transfection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号