首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.  相似文献   

2.
Homologous dicarboxyl dendritic amphiphiles-RCONHC(CH(3))(CH(2)CH(2)COOH)(2), 4(n); and ROCONHC(CH(3))(CH(2)CH(2)COOH)(2), 5(n), where R=n-C(n)H(2)(n)(+1) and n=13-22 carbon atoms-were synthesized. Critical micelle concentrations (CMCs) in aqueous triethanolamine solutions and at pH 7.4 were measured along with hemolytic activity (effective concentrations, EC(10)) in phosphate-buffered saline (PBS). LogCMC showed a linear dependence on chain length (n); the longest chain in each series had the lowest CMC-in triethanolamine: 4(21), 180μM and 5(22), 74μM and at pH 7.4: 4(21), 78μM and 5(22), 33μM. These two series, 4(n) and 5(n), and three series of homologous tricarboxyl dendritic amphiphiles-RCONHC(CH(2)CH(2)COOH)(3), 1(n); ROCONHC(CH(2)CH(2)COOH)(3), 2(n); RNHCONHC(CH(2)CH(2)COOH)(3), 3(n), where R=n-C(n)H(2)(n)(+1) and n=13-22 carbon atoms-were tested for growth inhibition of Staphylococcus aureus strain ATCC 6358 and methicillin-resistant S. aureus (MRSA) strain ATCC 43330 by microdilution in 0.1-strength brain heart infusion broth (BHIB). Amphiphiles 4(19), 4(21), 5(18), and 5(20) showed the strongest antibacterial activity (2.2-3.4μg/mL) against S. aureus (vancomycin, MIC=0.25μg/mL). These four plus 1(21), 2(20), 2(22), and 3(20) exhibited the strongest antibacterial activity (1.7-6.8μg/mL) against MRSA (vancomycin, MIC=0.25μg/mL). The MICs of these amphiphiles against six clinical MRSA were similar to those against the ATCC strain. In PBS, EC(10)s of the most active homologues ranged from 7 to 18μg/mL and 18 to 220μg/mL for di- and tricarboxyl dendritic amphiphiles, respectively. To assess the potential safety of using dendritic amphiphiles as drugs, measurements of micellar and hemolytic properties were conducted in the same medium (full-strength BHIB) that was used for antibacterial activity. The CMCs (9-36μg/mL, ~18-72μM) of ten amphiphiles were measured by microdilution (log2 progression) with dye-covered beads. The EC(10)s were similar to those in PBS. The MICs of most amphiphiles (14-72μg/mL) and vancomycin (1.1-2.2μg/mL) against both S. aureus and MRSA increased significantly compared to the MICs measured in 0.1-strength BHIB. The one exception, 5(18), had an MIC against S. aureus of 1.1μg/mL compared to vancomycin (2.2μg/mL). With CMC (9-18μg/mL) and EC(10) (16μg/mL) values higher than the MIC, 5(18) was discovered as a lead for further development.  相似文献   

3.
We report herein the design and synthesis of novel 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives based on the structures of new fluoroquinolones IMB and DZH. The antibacterial activity of these newly synthesized compounds was also evaluated and compared with gemifloxacin, ciprofloxacin, and levofloxacin. Results revealed that all of the target compounds 10-27 have good potency in inhibiting the growth of Staphylococcus aureus including MSSA (MIC: 0.125-8 μg/mL), Staphylococcus epidermidis including MRSE (MIC: 0.25-16 μg/mL), Streptococcus pneumoniae (MIC: 0.125-4 μg/mL), and Escherichia coli (MIC: 0.25-0.5 μg/mL). In particular, some compounds showed useful activity against several fluoroquinolone-resistant strains, and the most active compound 15 was found to be 16-128, 2-32, and 4-8-fold more potent than the three reference drugs against fluoroquinolone-resistant MSSA, MRSA, and MRSE.  相似文献   

4.
Thirty-one 3-aryl-4-alkylaminofuran-2(5H)-ones were designed, prepared and tested for their antibacterial activity. Some of them showed significant antibacterial activity against Gram-positive organisms, especially against Staphylococcus aureus ATCC 25923, but all were inactive against Gram-negative organisms. Out of these compounds, 3-(4-bromophenyl)-4-(2-(4-nitrophenyl)hydrazinyl)furan-2(5H)-one (4a11) showed the most potent antibacterial activity against S. aureus ATCC 25923 with MIC(50) of 0.42 μg/mL. The enzyme assay revealed that the possible antibacterial mechanism of the synthetic compounds might be due to their inhibitory activity against tyrosyl-tRNA synthetase. Molecular dockings of 4a11 into S. aureus tyrosyl-tRNA synthetase active site were also performed. This inhibitor snugly fitting the active site might well explain its excellent inhibitory activity. Meanwhile, this modeling disclosed that a more suitable optimization strategy might be to modify the benzene ring at 3-position of furanone with hydrophilic groups.  相似文献   

5.
A series of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives was synthesized and their activity screened in vitro against Staphylococcus aureus, Trypanosoma cruzi, and Candida albicans. The bioactivity was expressed as minimum inhibitory concentration (MIC) for S. aureus strains, and as fifty-percent inhibitory concentration (IC(50)) of parasite population growth for T. cruzi. A molecular modeling approach was performed to establish qualitative relationships regarding the biological data and the compounds' physicochemical properties. The 5-(4-OC(4)H(9)Ph, 5l), and 5-(4-CO(2)CH(3)Ph, 5o) derivatives were the most active compounds for S. aureus ATCC 25923 (MIC=1.95-1.25 μg/mL) and T. cruzi (IC(50)=7.91 μM), respectively. Also, a preliminary evaluation against C. albicans involving some compounds was performed and the 5-(4-CH(3)Ph, 5e) derivative was the most active compound (MIC=3.28-2.95 μg/mL). In this preliminary study, all synthesized 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives were active against all microorganisms tested.  相似文献   

6.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

7.
Nitroimidazoles and their derivatives have drawn continuing interest over the years because of their varied biological activities, recently found application in drug development for antimicrobial chemotherapeutics and antiangiogenic hypoxic cell radiosensitizers. In order to search for novel antibacterial agents, we designed and synthesized a series of secnidazole analogs based on oxadiazole scaffold (4-21). Among these compounds, 4 and 7-21 were reported for the first time. These compounds were tested for antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. This new nitroimidazole derivatives class demonstrated strong antibacterial activities. Escherichia coli β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitory assay and docking simulation indicated that the compounds 2-(2-methoxyphenyl)-5-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)-1,3,4-oxadiazole (11) with MIC of 1.56-3.13 μg/mL against the tested bacterial strains and 2-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)-5-(2-methylbenzyl)-1,3,4-oxadiazole (12) with MIC of 1.56-6.25 μg/mL were most potent inhibitors of Escherichia coli FabH.  相似文献   

8.
从新疆巩留县伊犁贝母的新鲜鳞茎中分离到一株具有分泌抑菌活性物质的内生尖孢镰孢菌Fusarium oxysporumY1,该菌在7种不同培养基上生长时显示出不同的菌落生长特征,而且只在沙氏培养基中生长时才具有分泌抑菌活性物质的能力。抑菌活性筛选结果表明:由该菌及其发酵液制备的发酵液浸膏、菌体裂解液浸膏以及经进一步纯化后获得的乙酸乙酯浸膏和正丁醇浸膏均具有明显的抑菌活性,其中以发酵液的乙酸乙酯浸膏和菌体裂解液的正丁醇浸膏活性最强,它们对金黄色葡萄球菌Staphylococcus aureus、表皮葡萄球菌Staphylococcus epidermidis、枯草芽孢杆菌Bacillus subtilis、藤黄八叠球菌Sarcina lutea和大肠杆菌Escherichia coli的最低抑菌浓度均小于25μg/mL。  相似文献   

9.
A series of benzimidazole-5-carboxylic acid alkyl ester derivatives carrying amide or amidine substituted methyl or phenyl groups at the position C-2 were synthesised and evaluated for antibacterial and antifungal activities against S. aureus, methicillin resistant S. aureus (MRSA), S. faecalis, methicillin resistant S. epidermidis (MRSE), E. coli and C. albicans. The results showed that while all simple acetamides are essentially inactive, aromatic amides and amidines have potent antibacterial activities. Aromatic amidine derivatives 13 f-h exhibited the best inhibitory activity with 1.56-0.39 microg/mL MIC values against MRSA and MRSE.  相似文献   

10.
In this study, a series of novel phenyl- and benzimidazole-substituted benzyl ethers were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Escherichia coli, Candida albicans, and Candida krusei. Compound 6g exhibited the most potent antibacterial activity with lowest MIC values of 3.12 and 6.25 microg/mL against S. aureus and MRSA, respectively.  相似文献   

11.
An efficient synthesis of 29 new binaphthyl-based neutral, and mono- and di-cationic, peptoids is described. Some of these compounds had antibacterial activities with MIC values of 1.9–3.9 μg/mL against Staphylococcus aureus. One peptoid had a MIC value of 6 μg/mL against a methicillin-resistant strain of S. aureus (MRSA) and a MIC value of 2 μg/mL against vancomycin-resistant strains of enterococci (VRE).  相似文献   

12.
2-(2-Pyridinyl)- (LI), 2-(6-methyl-2-pyridinyl)- (LII), 2-(6-methyl-2-pyridinyl)-5-methyl-(LIII), 2-(3-pyridinyl)- (LIV), 2-(3-pyridinyl)-5-methyl-1H-benzimidazoles (LV) and their complexes with Fe(NO3)3, Cu(NO3)2, Zn(NO3)2, and AgNO3 were synthesized and antibacterial activity of the compounds was tested toward Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis and antifungal activity against Candida albicans. The methyl groups of LIII increase the antimicrobial activity. The AgI complexes have considerable activity toward the microorganisms. Some ZnII complexes show an antimicrobial effect against S. aureus and S. flexneri, although the ligands themselves have no effect. CuII complexes have a considerable antibacterial effect to S. aureus and S. epidermidis.  相似文献   

13.
1,2-Bis-[2-(5-H/Me/Cl/NO2)-1H-benzimidazolyl]-1,2-ethanediols (L1-L4), 1,4-bis-[2-(5-H/Me/Cl)-1H-benzimidazolyl]-1,2,3,4-butanetetraols (L5-L7) and their complexes with ZnCl2, CdCl2 and HgCl2 were synthesized and antibacterial activity of the compounds was tested toward Staphylococcus aureus, S. epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis and antifungal activity against Candida albicans. HgII complexes have a considerably higher antimicrobial activity against all microorganisms. Some HgII complexes show higher antifungal activity than clotrimazole toward C. albicans. Zn2(L3)Cl4, Zn2(L4)Cl4, and Cd(L3)Cl2 were moderately effective against S. aureus and S. epidermidis; Cd(L4)Cl2 exhibited a weak activity only against S. epidermidis.  相似文献   

14.
AIMS: To evaluate the antibacterial and free-radical scavenging (FRS) activities of propolis collected from three different areas of Sonoran Desert in northwestern Mexico [Pueblo de Alamos (PAP), Ures (UP) and Caborca (CP)]. METHODS AND RESULTS: The antibacterial and FRS activities of Sonoran propolis were determined by the broth microdilution method and the DPPH (1,1-diphenyl-2-picrylhydracyl) assay, respectively. Propolis samples had antibacterial activity against only Gram-positive bacteria. The UP sample showed the highest antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) 100 microg ml(-1)] in a concentration-dependent manner (UP > CP > PAP). Caffeic acid phenethyl ester (CAPE), a UP propolis constituent, had very high growth-inhibitory activity towards Gram-positive bacteria, particularly against S. aureus (MIC 0.1 mmol l(-1)). To our knowledge, this is the first study showing a strong antibacterial activity of CAPE against S. aureus. Additionally, propolis CP exhibited high FRS activity (86% +/- 0.3 at 100 microg ml(-1)) comparable with those of the reference antioxidants vitamin C (87.4% +/- 1.7 at 70 micromol l(-1)) and BHT (66.07% +/- 0.76 at 140 micromol l(-1)). The propolis compounds CAPE and rutin showed high FRS activity (90.4% +/- 0.2 and 88.5% +/- 0.8 at 70 micromol l(-1), respectively). CONCLUSIONS: Sonoran propolis UP and CAPE had strong antibacterial activity against S. aureus. In addition, propolis CP showed potent FRS activity comparable with those of vitamin C and BHT. SIGNIFICANCE AND IMPACT OF THE STUDY: The strong antibacterial and antioxidant properties of Sonoran propolis and some of its constituents support further studies on the clinical applications of this natural bee product against S. aureus and several oxidative damage-related diseases.  相似文献   

15.
Two novel labdane-type diterpenoids, butanedioic acid mono[(13S)-13-hydroxylabda-8(17),14-dien-19-yl] ester (1) and butanedioic acid bis[(13S)-13-hydroxylabda-8(17),14-dien-19-yl] ester (2), along with the eleven known diterpenoids 3-13 and three other known compounds, were isolated from the bark of Larix chinensis. Their structures were elucidated both spectroscopically and chemically. The major diterpenoids 1-9, 11, and 13, as well as the very abundant phenolic compound 16, were subjected to antibacterial and cytotoxic bioassays. Compounds 7 and 9 showed remarkable in vitro inhibition of Staphylococcus aureus and S. epidermidis (MIC = 37-73 microM).  相似文献   

16.
A series of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents were synthesized for the first time and screened for their antimicrobial efficacy against four Gram-positive bacteria, four Gram-negative bacteria and two fungi by two fold serial dilution technique. The bioactive assay indicated that most of the target compounds displayed broad antimicrobial spectrum and good antibacterial and antifungal activities with low MIC values ranging from 0.25 to 2μg/mL against all the tested strains which exhibited comparable or even better efficiency in comparison with the reference drugs Chloramphenicol, Clinafloxacin and Fluconazole, respectively. Notably, some synthesized clinafloxacin triazoles showed stronger efficacy against methicillin-resistant Staphylococcus aureus than their parent Clinafloxacin.  相似文献   

17.
Reported previously by our group, we have developed a novel class of antibacterial cationic anthraquinone analogs with superb potency (MIC <1μg/mL) against Gram positive (G+) pathogens including Methicillin-resistant Staphylococcus aureus (MRSA). However, most of these compounds only manifest modest antibacterial activity against Gram negative (G-) bacteria. Further investigation on the antibacterial mode of action using fluorogenic dyes reveals that these compounds exert two different modes of action that account for the difference in their antibacterial profile. It was found that most of the compounds exert their antibacterial activity by disrupting the redox processes of bacteria. At high concentration, these compounds can also act as membrane disrupting agents. This information can help to design new therapeutics against various bacteria.  相似文献   

18.
Some alpha,omega-alkanediyl bis-dimethylammonium bromide compounds (gemini surfactants) referred as "m-s-m" have been synthesized, purified and characterized by usual spectroscopic methods. These compounds have been screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Their activity was compared. The compounds tested showed excellent in vitro antibacterial activity against Staphylococcus aureus ranging from 1.5 to 20 microg/ml and had variable activity against E. coli with minimum minimum inhibitory concentration (MIC) of 50 microg/ml. These compounds are less active against P. aeruginosa. On the other hand, contrary to the antibacterial activity of these products against S. aureus, a relation between the MIC and the critical micellar concentration (CMC) was found and relationship between chain's Length and antibacterial activity was found.  相似文献   

19.
Antibiotic resistance is a worldwide problem that needs to be addressed. Staphylococcus aureus is one of the dangerous “ESKAPE” pathogens that rapidly evolve and evade many current FDA-approved antibiotics. Thus, there is an urgent need for new anti-MRSA compounds. Ebselen (also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one) has shown promising activity in clinical trials for cerebral ischemia, bipolar disorder, and noise-induced hearing loss. Recently, there has been a renewed interest in exploring the antibacterial properties of ebselen. In this study, we synthesized an ebselen-inspired library of 33 compounds where the selenium atom has been replaced by sulfur (ebsulfur derivatives) and evaluated them against a panel of drug-sensitive and drug-resistant S. aureus and non-S. aureus strains. Within our library, we identified three outstanding analogues with potent activity against all S. aureus strains tested (MIC values mostly ⩽2 μg/mL), and numerous additional ones with overall very good to good antibacterial activity (1–7.8 μg/mL). We also characterized the time-kill analysis, anti-biofilm ability, hemolytic activity, mammalian cytotoxicity, membrane-disruption ability, and reactive oxygen species (ROS) production of some of these analogues.  相似文献   

20.
Ten xanthones with one or two isoprenoid groups and a prenylated benzophenone isolated from roots of Cudrania cochinchinensis (Moraceae) were tested for their antimicrobial activities against Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA). Among these compounds, gerontoxanthone H exhibited considerable antibacterial activity against B. subtilis (MIC = 1.56 microg/ml). Four xanthones, gerontoxanthone I, toxyloxanthone C, cudraxanthone S, and 1,3,7-trihydroxy-2-prenylxanthone, showed weak antibacterial activity against the bacterium (MICs = 3.13-6.25 microg/ml). These compounds also exhibited similar MIC values against methicillin-sensitive S. aureus, MRSAs, and Micrococcus luteus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号