首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine-derived Williopsis saturnus WC91-2 was found to produce very high killer toxin activity against the pathogenic yeast Metschnikowia bicuspidata WCY isolated from the diseased crab. It is interesting to observe that the purified β-1,3-glucanase from W. saturnus WC91-2 had no killer toxin activity but could inhibit activity of the WC91-2 toxin produced by the same yeast. In contrast, the WC91-2 toxin produced had no β-1,3-glucanase activity. We found that the mechanisms of the inhibition may be that the β-1,3-glucanase competed for binding to β-1,3-glucan on the sensitive yeast cell wall with the WC91-2 toxin, causing decrease in the amount of the WC91-2 toxin bound to β-1,3-glucan on the sensitive yeast cell wall and the activity of the WC91-2 toxin against the sensitive yeast cells. In order to make W. saturnus WC91-2 produce high activity of the WC91-2 toxin against the yeast disease in crab, it is necessary to delete the gene encoding β-1,3-glucanase.  相似文献   

2.
Some marine yeasts have recently been recognised as pathogenic agents in crab mariculture, but may be inhibited or killed by 'killer' yeast strains. We screened multiple yeast strains from seawater, sediments, mud of salterns, guts of marine fish, and marine algae for killer activity against the yeast Metchnikowia bicuspidata WCY (pathogenic to crab Portunus trituberculatus), and found 17 strains which could secrete toxin onto the medium and kill the pathogenic yeast. Of these, 5 strains had significantly higher killing activity than the others; routine identification and molecular methods showed that these were Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3. We found that the optimal conditions for killer toxin production and action of killer toxin produced by the marine killer yeasts were not all in agreement with those of marine environments and for crab cultivation. We found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast, and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced could hydrolyze laminarin and the hydrolysis end products were monosaccharides.  相似文献   

3.
As the β-1, 3-glucanase produced by the marine-derived Williopsis saturnus WC91-2 could inhibit the activity of the killer toxin produced by the same yeast, the WsEXG1 gene encoding exo-β-1, 3-glucanase in W. saturnus WC91-2 was disrupted. The disruptant WC91-2-2 only produced a trace amount of β-1, 3-glucanase but had much higher activity of killer toxin than W. saturnus WC91-2. After the disruption of the WsEXG1 gene, the expression of the gene was significantly decreased from 100% in the cells of W. saturnus WC91-2 to 27% in the cells of the disruptant WC91-2-2 while the expression of the killer toxin gene in W. saturnus WC91-2 and the disruptant WC91-2-2 was almost the same. During 2-l fermentation, the disruptant WC91-2-2 could produce the highest amount of killer toxin (the size of the inhibition zone was 22 ± 0.7 mm) within 36 h when the cell growth reached the middle of the log phase.  相似文献   

4.
The exo-β-1,3-glucanase structural gene (WsEXG1 gene, accession number: FJ875997.2) was isolated from both the genomic DNA and cDNA of the marine yeast Williopsis saturnus WC91-2 by inverse PCR and RT-PCR. An open reading frame of 1,254 bp encoding a 417 amino acid protein (isoelectric point: 4.5) with calculated molecular weight of 46.2 kDa was characterized. The promoter of the gene (intronless) was located from −28 to −77 and had one TATA box while its terminator contained the sequence AAGAACAATAAACAA from +1,386 to +1,401. The protein had the Family 5 glycoside hydrolase signature IGLELLNEPL and a fragment with the sequence of NLCGEWSAA, where the Glu-310 (E) was considered to be the catalytic nucleophile. The WsEXG1 gene was overexpressed in Yarrowia lipolytica Po1h and the recombinant WsEXG1 was purified and characterized. The molecular weight of the purified rWsEXG1 was 46.0 kDa. The optimal pH and temperature of the purified rWsEXG1 were 5.0°C and 40°C, respectively. The purified rWsEXG1 had high exo-β-1,3-glucanase activity. Therefore, the recombinant β-1,3-glucanase may have highly potential applications in food and pharmaceutical industries.  相似文献   

5.
Lipophilic Malassezia species may induce catheter-associated sepsis in premature neonates and immunocompromised patients receiving parenteral lipid emulsions. To assess the participation of lipolytic enzymes in the pathogenesis of this yeast, we cloned a gene encoding the enzyme. A lipolytic enzyme in the culture supernatant of Malassezia pachydermatis was purified 210-fold to homogeneity. The enzyme showed high esterase activity toward p-nitrophenyl octanoate. The cDNA encoding the enzyme was cloned using a degenerate oligonucleotide primer constructed from the N-terminal amino acid sequence. The cDNA consisted of 1582 bp, including an open reading frame encoding 470 amino acids. The first 19 amino acids and the following 13 amino-acid sequence were predicted to be the signal peptides for secretion and prosequence, respectively. The predicted molecular mass of the 438-amino acid mature protein was 48 kDa. Analysis of the deduced amino acid sequence revealed that it contains the consensus motif (Gly-X-Ser-X-Gly), which is conserved among lipolytic enzymes. Homology investigations showed that the enzyme has similarities principally with 11 lipases produced by Candida albicans (29-34% identity) and some other yeast lipases.  相似文献   

6.
The yeast Kluyveromyces siamensis HN12-1 isolated from mangrove ecosystem was found to be able to produce killer toxin against the pathogenic yeast (Metschnikowia bicuspidata WCY) in crab. When the killer yeast was grown in the medium with pH 4.0 and 0.5% NaCl and at 25 °C, it could produce the highest amount of killer toxin against the pathogenic yeast M. bicuspidata WCY. The killing activity of the purified killer toxin against the pathogenic yeast M. bicuspidata WCY was the highest when it was incubated at 25 °C in the assay medium without added NaCl and pH 4.0. The molecular weight of the purified killer toxin was 66.4 kDa. The killer toxin produced by the yeast strain HN12-1 could kill only the whole cells of M. bicuspidata WCY among all the yeast species tested in this study. This is the first time to report that the killer toxin produced by the yeast K. siamensis HN12-1 isolated from the mangrove ecosystem only killed pathogenic yeast M. bicuspidata WCY.  相似文献   

7.
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.  相似文献   

8.
In our previous study, it was found that the killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b has both killing activity and β-1,3-glucanase activity and the molecular mass of it is 47.0 kDa. In this study, the same yeast strain was found to produce another killer toxin which only had killing activity against some yeast strains, but had no β-1,3-glucanase activity and the molecular mass of the purified killer toxin was 67.0 kDa. The optimal pH, temperature and NaCl concentration for action of the purified killer toxin were 3.5, 16 °C and 4.0 % (w/v), respectively. The purified killer toxin could be bound by the whole sensitive yeast cells, but was not bound by manann, chitin and β-1,3-glucan. The purified killer toxin had killing activity against Yarrowia lipolytica, Saccharomyces cerevisiae, Metschnikowia bicuspidata WCY, Candida tropicalis, Candida albicans and Kluyveromyces aestuartii. Lethality of the sensitive cells treated by the newly purified killer toxin from W. anomalus YF07b involved disruption of cellular integrity by permeabilizing cytoplasmic membrane function.  相似文献   

9.
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85 degrees C and the enzyme exhibited a high level of heat stability.  相似文献   

10.
The gene encoding the Vibrio proteolyticus aminopeptidase was cloned and sequenced and its amino acid sequence was deduced. The gene encodes a 54 kDa protein, larger than the previously reported size of 30 kDa for the purified aminopeptidase. Sequence alignments revealed a 43-45% homology with two other Vibrio sp. extracellular proteinases.  相似文献   

11.
The intracellular beta-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50 degrees C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with beta-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with beta-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-beta-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50 degrees C.  相似文献   

12.
An extracellular alkaline metalloprotease (MprI) from Alteromonas sp. strain O-7 was purified and characterized. The molecular mass of the purified enzyme was estimated to be 56 kDa by SDS-PAGE. The optimum pH and temperature were pH 10.0 and 60 degrees C, respectively. The gene (mprI) encoding MprI was cloned and its nucleotide sequence was analyzed. The deduced amino acid sequence of MprI showed significant similarity to metalloproteases classified into the thermolysin family. Furthermore, sequence analysis showed that another metalloprotease (MprII)-encoding gene was located downstream from mprI. The deduced amino acid sequence of MprII showed high similarity to metalloproteases of the aminopeptidase family. Similar repeated C-terminal extensions were found in both MprI and MprII.  相似文献   

13.
The intracellular β-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50°C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with β-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with β-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-β-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50°C.  相似文献   

14.
A new cry gene (cry1Ca9) was cloned and sequenced from a Bacillus thuringiensis isolate native to Taiwan (G10-01A). The cry1C-type gene, designated cry1Ca9, consisted of an open reading frame of 3,567 bp, encoding a protein of 1,189 amino acid residues. The polypeptide has the deduced amino acid sequences predicting molecular masses of 134.7 kDa. The gene sequence was compared against the GenBank nucleotide sequence data base. It was found that the cry1Ca9 gene coded for a 134.7-kDa protoxin which had greater than 99.8% homology with the previously reported cry1Ca1 gene, as only three mismatches were found between the two amino acid sequences. When the Cry1Ca9 toxin was expressed in a crystal-negative strain of B. thuringiensis (cryB-), elliptical crystals were produced. Cell extracts from this recombinant strain appear to have high insecticidal activity against lepidopteran larvae (Plutella xylostella).  相似文献   

15.
The DNA encoding the exfoliative toxin A gene (eta) of Staphylococcus aureus was cloned into bacteriophage lambda gt11 and subsequently into plasmid pLI50 on a 1,391-base-pair DNA fragment of the chromosome. Exfoliative toxin A is expressed in the Escherichia coli genetic background, is similar in length to the toxin purified from culture medium, and is biologically active in an animal assay. The nucleotide sequence of the DNA fragment containing the gene was determined. The protein deduced from the nucleotide sequence is a polypeptide of 280 amino acids. The mature protein is 242 amino acids. The DNA sequence of the exfoliative toxin B gene was also determined. Corrections indicate that the amino acid sequence of exfoliative toxin B is in accord with chemical sequence data.  相似文献   

16.
Mitochondrial manganese-containing superoxide dismutase was purified around 112-fold with an overall yield of 1.1% to apparent electrophoretic homogeneity from the dimorphic pathogenic fungus, Candida albicans. The molecular mass of the native enzyme was 106 kDa and the enzyme was composed of four identical subunits with a molecular mass of 26 kDa. The enzyme was not sensitive to either cyanide or hydrogen peroxide. The N-terminal amino acid sequence alignments (up to the 18th residue) showed that the enzyme has high similarity to the other eukaryotic manganese-containing superoxide dismutases. The gene sod2 encoding manganese-containing superoxide dismutase has been cloned using a product obtained from polymerase chain reaction. Sequence analysis of the sod2 predicted a manganese-containing superoxide dismutase that contains 234 amino acid residues with a molecular mass of 26173 Da, and displayed 57% sequence identity to the homologue of Saccharomyces cerevisiae. The deduced N-terminal 34 amino acid residues may serve as a signal peptide for mitochondrial translocation. Several regulatory elements such as stress responsive element and haem activator protein 2/3/4/5 complex binding sites were identified in the promoter region of sod2. Northern analysis with a probe derived from the cloned sod2 revealed a 0.94-kb band, which corresponds approximately to the expected size of mRNA deduced from sod2.  相似文献   

17.
利用PCR技术,从酵母染色体中扩增得到酵母豆蔻酰-CoA:蛋白质N端转酰基酶(YSCNMT)基因,并克隆到pBluescriptKS+载体中。由DNA全序测定表明,获得了YSCNMT编码基因。进一步构建了T7Promoter控制下的含上述完整YSCNMT编码基因的表达质粒pMFT7-5-NMT,转化大肠杆菌BL21(DE3),进行IPTG诱导表达研究。通过SDS-PAGE分析,观察到一与理论分子量一致的诱导条带(约53kD),占全菌蛋白的39%左右,且可溶性部分约占上清液中全部蛋白的34%。经一步P11磷酸纤维素阳离子交换柱层析,将其纯化到纯度达97%以上.纯化的表达产物经N端氨基酸序列分析,所测定的N端5个氨基酸的序列,与从克隆的YSCNMT基因推出的氨基酸序列完全一致(不含N端Met)。对所得的YSCNMT进行酶活力鉴定,观察到了明显的活力。  相似文献   

18.
The gene of an intracellular D(-)-3-hydroxybutyrate oligomer hydrolase (i3HBOH) was cloned and sequenced from a poly(3-hydroxybutyrate) (PHB)-degrading bacterium, Acidovorax sp. strain SA1. The i3HBOH gene has 876 nucleotides corresponding to the deduced sequence of 292 amino acids. In this amino acid sequence, the general lipase box sequence (G-X1-S-X2-G) was found, whose serine residue was determined to the active sites serine by site-directed mutagenesis. An i3HBOH was purified to electrophoretical homogeneity from SA1. The molecular mass of the purified enzyme was estimated to be 32 kDa by SDS-PAGE. The N-terminal amino acid sequence of the purified enzyme corresponded to the deduced N-terminal amino acid sequence in the cloned i3HBOH gene. This is the first cloning and sequencing of an intracellular D(-)-3-hydroxybutyrate oligomer hydrolase gene to date. Received: 19 October 2001 / Accepted: 7 December 2001  相似文献   

19.
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.  相似文献   

20.
Isolation of a cDNA encoding a protease from Perinereis aibuhitensis Grube   总被引:2,自引:0,他引:2  
The cDNA encoding a protease of Perinereis aibuhitensis Grube (PPA) was cloned. The deduced amino acid sequence analysis showed that the protein had 49% identity to the C-terminal amino acid 169-246 of serine protease of Heterodera glycines. Northern blotting analysis indicated that the cDNA could hybridize with mRNA of approximately 260 bases isolated from the marine earthworm. The cDNA was amplified by polymerase chain reaction and cloned into pMAL-p2 to construct expression vector pMAL-PPA. pMAL-PPA was introduced into Escherichia coli BL21(DE3) and overexpression of PPA fused with maltose binding protein was achieved by isopropyl-β-D-thiogalactopyranoside induction. The fusion protein was purified by affinity chromatography on an amylose resin column and ion-exchange chromatography on a diethylaminoethyl-Sepharose 4B column. Rabbits were immunized with the purified protein and antiserum was prepared. The antibody could react with a protein of approximately 9 kDa extracted from the marine earthworm as shown by Western blotting analysis. The activity analysis of the recombinant PPA suggested that it was probably a plasminogen activator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号