首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Whereas both ethanol and gut ischemia/reperfusion (I/R) are known to alter hepatic microvascular function, little is known about the influence of ethanol consumption on the hepatic microvascular responses to I/R. The objective of this study was to determine whether acute ethanol administration exacerbates the hepatic microvascular dysfunction induced by gut I/R. Rats were exposed to gut ischemia for 30 min followed by reperfusion. Intravital videomicroscopy was used to monitor leukocyte recruitment and the number of nonperfused sinusoids (NPS). Plasma alanine aminotransferase (ALT), tumor necrosis factor-alpha (TNF-alpha), and endotoxin concentrations were monitored. In separate experiments, ethanol was administered 15 min or 24 h before gut ischemia. In control rats, gut I/R increased the number of stationary leukocytes and NPS. It also elevated the plasma ALT, TNF-alpha, and endotoxin with a corresponding increase in intestinal mucosal permeability. Low-dose ethanol consumption 15 min before gut ischemia blunted the gut I/R-induced leukostasis and elevations in plasma TNF-alpha and ALT. However, high-dose ethanol consumption aggravated the gut I/R-induced increases in leukostasis and increases in plasma endotoxin and ALT. When ethanol was administered 24 h before, high-dose ethanol aggravated the gut I/R-induced hepatocellular injury, but low-dose ethanol did not have any effects on it. These results suggest that low-dose ethanol consumption shortly before gut ischemia attenuates the hepatic inflammatory responses, microvascular dysfunction, and hepatocellular injury elicited by gut I/R, whereas high-dose ethanol consumption appears to significantly aggravate these gut I/R-induced responses.  相似文献   

2.
It has been known that many immediately early genes are expressed during ischemia/reperfusion (I/R) injury. Here, employing a model of hepatic I/R, we show that inducible nitric oxide synthase (iNOS) is induced via the activation of nuclear factor kappaB (NF-kappaB) after I/R in rat liver. When liver was subjected to ischemia followed by reperfusion, but not ischemia alone, an NF-kappaB complex composed of p50/p65 heterodimer and p50 homodimer was rapidly activated within 1 h and remained elevated for up to 3 h, and then tended to decline after 5 h of reperfusion. Also, the expression of iNOS mRNA was initiated after 1 h and continued to increase after 5 h of reperfusion during the time course studied. This upregulated iNOS mRNA expression coincides with increased iNOS enzyme activity and NF-kappaB binding activity after hepatic I/R. Administration of N-acetylcysteine (NAC, 20 mg/kg i.v. 10 min before reperfusion), an antioxidant, not only significantly inhibited the expression of iNOS mRNA but also blocked upregulated NF-kappaB binding activity after reperfused liver. These results suggest that NF-kappaB is activated by oxidative stress during hepatic I/R and may play a significant role in the induction of the iNOS gene.  相似文献   

3.
We previously showed that C-phycocyanin (PC), an antioxidant biliprotein pigment of Spirulina platensis (a blue-green alga), effectively inhibited doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. Here we investigated the cardioprotective effect of PC against ischemia-reperfusion (I/R)-induced myocardial injury in an isolated perfused Langendorff heart model. Rat hearts were subjected to 30 min of global ischemia at 37 degrees C followed by 45 min of reperfusion. Hearts were perfused with PC (10 microM) or Spirulina preparation (SP, 50 mg/l) for 15 min before the onset of ischemia and throughout reperfusion. After 45 min of reperfusion, untreated (control) hearts showed a significant decrease in recovery of coronary flow (44%), left ventricular developed pressure (21%), and rate-pressure product (24%), an increase in release of lactate dehydrogenase and creatine kinase in coronary effluent, significant myocardial infarction (44% of risk area), and TdT-mediated dUTP nick end label-positive apoptotic cells compared with the preischemic state. PC or SP significantly enhanced recovery of heart function and decreased infarct size, attenuated lactate dehydrogenase and creatine kinase release, and suppressed I/R-induced free radical generation. PC reversed I/R-induced activation of p38 MAPK, Bax, and caspase-3, suppression of Bcl-2, and increase in TdT-mediated dUTP nick end label-positive apoptotic cells. However, I/R also induced activation of ERK1/2, which was enhanced by PC treatment. Overall, these results for the first time showed that PC attenuated I/R-induced cardiac dysfunction through its antioxidant and antiapoptotic actions and modulation of p38 MAPK and ERK1/2.  相似文献   

4.
Various mechanisms have been proposed for the pathogenesis of postischemic hepatic injury, including the generation of reactive oxygen metabolites. Oxytocin (OT) possesses antisecretory, antiulcer effects, facilitates wound healing and has anti-inflammatory properties. Hepatic ischemia-reperfusion (I/R)-injury was induced by inflow occlusion to median and left liver lobes ( approximately 70%) for 30 min of ischemia followed by 1h reperfusion in female Sprague-Dawley rats under anesthesia. I/R group (n=8) was administered intraperitoneally either OT (500 microg/kg) or saline at 24 and 12 h before I/R and immediately before reperfusion. Sham-operated group that underwent laparotomy without hepatic ischemia served as the control. Rats were decapitated at the end of reperfusion period. Hepatic samples were obtained for the measurement of myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH) and collagen levels and histopathological analysis. Tumor necrosis factor-alfa (TNF-alpha) and transaminases (SGOT, SGPT) were assayed in serum samples. I/R injury caused significant increases in hepatic microscopic damage scores, MPO activity, collagen levels, transaminase, serum TNF-alpha levels. Oxytocin treatment significantly reversed the I/R-induced elevations in serum transaminase and TNF-alpha levels and in hepatic MPO and collagen levels, and reduced the hepatic damage scores. OT treatment had tendency to abolish I/R-induced increase in MDA levels, while GSH levels were not altered. These results suggest that OT has a protective role in hepatic I/R injury and its protective effect in the liver appears to be dependent on its inhibitory effect on neutrophil infiltration.  相似文献   

5.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

6.
Activation of the nuclear enzyme poly(ADP-ribose) synthetase (PARS) is important in the cellular response to oxidative stress. During ischemia and reperfusion (I/R) increased free radical production leads to DNA breakage that stimulates PARS which in turn results in an energy-consuming metabolic cycle and initiation of the apoptotic process. Previous studies have reported that PARS inhibition confers protection in various models of I/R-induced cardiovascular damage. The purpose of this study was to determine the role of PARS inhibition in I/R-induced injury of smooth muscle cells and endothelium in the coronary circulation of the isolated guinea-pig heart. Control hearts and those treated with a PARS inhibitor--benzamide (100 micromol L(-1)), were subjected to 30 min of subglobal ischemia and subsequent reperfusion (90 min). To analyze the functional integrity of smooth muscle cells and endothelium, one-minute intracoronary infusions of endothelium-independent (sodium nitroprusside, NaNP; 3 micromol L(-1)) and endothelium-dependent (substance P, SP; 10 nmol L(-1)) vasodilators were used before ischemia and at the reperfusion time. The degree of the injury of coronary smooth muscle and endothelial cells induced by I/R was estimated in terms of diminished vasodilator responses to NaNP (at 55 min and 85 min of reperfusion) and to SP (at 70 min of reperfusion), respectively, and expressed as the percentage of preischemic response. I/R reduced vasorelaxant responses to both vasodilators by half (to 54.1 +/- 5.1% and to 53.6 +/- 4.9% of preischemic value for NaNP at 55 min and 85 min of reperfusion, respectively and to 45.9 +/- 6.5% for SP at 70 min of reperfusion). PARS inhibition provided complete restoration of vasorelaxation induced by NaNP (107.6 +/- 13.3% and 104 +/- 14.4% of preischemic response at the two time points of reperfusion, respectively). However, there was no effect on the SP-induced response (48+12.1% of preischemic response). We conclude that pharmacological PARS inhibition with benzamide protects coronary smooth muscle cells but not endothelium against I/R-induced reperfusion injury in the coronary circulation of the guinea-pig heart.  相似文献   

7.
8.
Free radicals, calcium overloading and loss of membrane phospholipids play an important role in the development of ischemia/reperfusion (I/R) injury. Melatonin is a well-known antioxidant and free radical scavenger. Melatonin may also reduce the intracellular calcium overloading and inhibit lipid peroxidation. This study was designed to investigate the effects of melatonin on the I/R-induced cardiac infarct size in an in vivo rat model. We also investigated glutathione (GSH) levels, an antioxidant the levels of which are influenced by oxidative stress, and malondialdehyde (MDA) levels, which is an index of lipid peroxidation. To produce cardiac damage, the left main coronary artery was occluded for 30 min, followed by 120 min reperfusion, in anesthetized rats. Melatonin (10 mg/kg) or vehicle was given 10 min before ischemia via the jugular vein. Infarct size, expressed as the percentage of the risk zone, was found significantly greater in I/R group than in the melatonin-treated I/R group. MDA levels were significantly higher, but GSH levels were lower in the I/R group than in the control group. Melatonin significantly reduced the MDA values and increased the GSH levels. These results suggest that oxidative stress contributes to myocardial I/R injury and melatonin administration exerts a mitigating effect on infarct size. Furthermore, the results indicated that melatonin improves the antioxidant capacity of the heart and attenuates the degree of lipid peroxidation after I/R.  相似文献   

9.
Poly(ADP-ribose) polymerase (PARP) inhibitors have neuroprotective effects after retinal ischemia and reperfusion (I/R) injury, but mechanisms of this action are not clear. A second generation PARP inhibitor, GPI 15427, was administrated to mice to investigate the possible mechanisms underlying its neuroprotective effects after retinal I/R injury. Ischemia was induced by increasing intraocular pressure to 80-90 mm Hg for 60 min followed by reperfusion, and mice were treated with GPI 15427 (40 mg/kg(-1) day(-1), orally) 2 days before or 1 day after injury. Histopathology caused by the retinal I/R injury was estimated by TUNEL assay and histological analyses. Relative gene expressions were evaluated by RT-PCR, Western blotting and immunohistological studies. GPI 15427 inhibited the retinal I/R-induced PARP activation and glial cell activation. GPI 15427 also significantly inhibited the I/R-induced neurodegeneration, as well as increase in TUNEL-positive cells. I/R-induced PERK-eIF2α-CHOP activation and Bip over-expression were inhibited by GPI 15427, while it did not suppress I/R-induced CHOP over-expression and degeneration of retinal capillaries. Our results suggest that GPI 15427 inhibited retinal I/R-induced neurodegeneration and glial cell activation, and this was associated with an effect of the drug to suppress PERK-eIF2α-CHOP activation and Bip over-expression. These results provide evidence that GPI 15427 inhibits retinal I/R injury at least in part via inhibition of endoplasmic reticulum stress.  相似文献   

10.
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70 %) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.  相似文献   

11.
The Ca2+-activated protease calpain has been shown to play a deleterious role in the heart during ischemia-reperfusion (I/R). We tested the hypothesis that exercise training would minimize I/R-induced calpain activation and provide cardioprotection against I/R-induced injury. Hearts from adult male rats were isolated in a working heart preparation, and myocardial injury was induced with 25 min of global ischemia followed by 45 min of reperfusion. In sedentary control rats, I/R significantly increased calpain activity and impaired cardiac performance (cardiac work during reperfusion = 24% of baseline). Compared with sedentary animals, exercise training prevented the I/R-induced rise in calpain activity and improved cardiac work (recovery = 80% of baseline). Similar to exercise, pharmacological inhibition of calpain activity resulted in comparable cardioprotection against I/R injury (recovery = 86% of baseline). The exercise-induced protection against I/R-induced calpain activation was not due to altered myocardial protein levels of calpain or calpastatin. However, exercise training was associated with increased myocardial antioxidant enzyme activity (Mn-SOD, catalase) and a reduction in oxidative stress. Importantly, exercise training also prevented the I/R-induced degradation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a. These findings suggest that increases in endogenous antioxidants may diminish the free radical-mediated damage and/or degradation of Ca2+ handling proteins (such as SERCA2a) typically observed after I/R. In conclusion, these results support the concept that calpain activation is an important component of I/R-induced injury and that exercise training provides cardioprotection against I/R injury, at least in part, by attenuating I/R-induced calpain activation.  相似文献   

12.
High density lipoproteins (HDL) protect the heart against ischemia/reperfusion (I/R) injury, and matrix metalloproteinase-2 (MMP-2) directly contributes to cardiac contractile dysfunction after I/R. To investigate the possible involvement of MMP-2 inhibition in HDL-mediated cardioprotection, isolated rat hearts underwent 20 min of low-flow ischemia and 30 min of reperfusion. Plasma-derived and synthetic HDL attenuated the I/R-induced cardiac MMP-2 activation and release in a dose-dependent way. The attenuation of I/R-induced MMP-2 activation by HDL correlated with the reduction of post-ischemic contractile dysfunction and cardiomyocyte necrosis. These results indicate prevention of MMP-2 activation as a novel mechanism for HDL-mediated cardioprotection.  相似文献   

13.
Liver ischemia/reperfusion (I/R) injury is a serious clinical problem. The reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) are important mediators in liver I/R injury. This study was designed to investigate the effect of preischemic treatment with fenofibrate (Peroxisome proliferator-activated receptor- α agonist) on the oxidative stress and inflammatory response to hepatic I/R injury in rats. Hepatic I/R was induced by clamping the blood supply of the left lateral and median lobes of the liver for 60 min, followed by reperfusion for 4 h. Each animal group was pretreated with a single dose of fenofibrate (50 mg/kg body weight) intraperitoneally 1 h before ischemia. At the end of reperfusion, blood samples and liver tissues were obtained to assess serum alanine aminotransferase (ALT), TNF-α, hepatic malondialdehyde (MDA) and superoxide dismutase activity (SOD). Liver specimens were obtained and processed for light and electron microscopic study. Hepatic I/R induced a significant elevation of serum ALT and TNF-α with significant elevation of hepatic MDA and reduction of SOD activity. Histopathological examination revealed hepatic inflammation, necrosis and apoptosis. Preischemic treatment with fenofibrate at a dose of 50 mg/kg significantly attenuated the biochemical and structural alterations of I/R-induced liver injury.  相似文献   

14.
Higenamine, a plant-based alkaloid, exhibits various properties, such as antiapoptotic and antioxidative effects. Previous studies proved that higenamine possesses potential therapeutic effects for ischemia/reperfusion (I/R) injuries. However, the role of higenamine in cerebral I/R injury has not been fully evaluated. Therefore, we aimed to investigate the effect of higenamine on cerebral I/R injury and the potential mechanism. Our data showed that higenamine ameliorated oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cells injury. Induction of reactive oxygen species and malonaldehyde production, and the inhibition of superoxide dismutase and glutathione peroxidase activity caused by OGD/R were attenuated by higenamine. In addition, higenamine inhibited the increases in caspase-3 activity and Bax expression, and inhibited the decrease in Bcl-2 expression. Furthermore, higenamine elevated the expression levels of p-Akt, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). The inhibitor of PI3K/Akt (LY294002) abolished the protective effects of higenamine on OGD/R-induced neuronal cells. These findings indicated that higenamine protects neuronal cells against OGD/R-induced injury by regulating the Akt and Nrf2/HO-1-signaling pathways. Collectively, higenamine might be considered as new strategy for the prevention and treatment of cerebral I/R injury.  相似文献   

15.
PNA+Tempol, albumin containing conjugated (polynitroxyl albumin; PNA) and free (4-hydroxyl-2,2,6,6-tetramethyl-piperidinyl-1-oxyl; Tempol) nitroxide may protect against injury caused by reactive oxygen species. Therefore, the actions of PNA+Tempol on liver injury and inflammation induced by hepatic ischemia and reperfusion (I/R) were examined. Rats were subjected to 1 h ischemia followed by 24 h reperfusion in the absence (I/R) or presence of PNA+Tempol (25%; 15 mL/kg, i.v.) (I/R+PNA+Tempol) or human serum albumin (23%; 13.5 mL/kg, i.v.) (I/R+HSA). Test solutions were administered prior to and for 2 h during reperfusion. Sham-operated rats underwent surgery with neither ischemia nor infusion. I/R+PNA+Tempol rats had significantly less liver injury and inflammation than I/R rats. I/R+PNA+Tempol livers exhibited focal lesions whereas I/R livers exhibited global necrosis. Likewise, plasma ALT activity was significantly lower in I/R+PNA+Tempol rats. PNA+Tempol reduced I/R-induced neutrophil accumulation and intercellular adhesion molecule-1 (ICAM-1) expression. HSA did not alter I/R-induced liver injury or inflammation. Sham-operated rats exhibited normal liver morphology and no inflammation. Attenuation of I/R liver injury by PNA+Tempol may be mediated by its effect on inflammation, the major contributor to I/R injury. Reduction of inflammation by PNA+Tempol is most likely due to the antioxidative nature of the nitroxides.  相似文献   

16.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

17.
Administration of propofol at the time of reperfusion has shown to protect the heart from ischemia and reperfusion (I/R) injury. The aim of the present study was to investigate the molecular mechanism underling the cardioprotective effect of propofol against myocardial I/R injury (MIRI) in vivo and in vitro. Rat heart I/R injury was induced by ligation of the left anterior descending (LAD) artery for 30 min followed by 2-hr reperfusion. Propofol pretreatment (0.01 mg/g) was performed 10 min before reperfusion. In vitro MIRI was investigated in cultured cardiomyocytes H9C2 following hypoxia/reoxygenation (H/R) injuries. Propofol pretreatment in vitro was achieved in the medium supplemented with 25 μmol/L propofol before H/R injuries. Propofol pretreatment significantly increased miRNA-451 expression, decreased HMGB1 expression, reduced infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts undergoing I/R injuries. Knockdown of miRNA-451 48 hr before I/R injury was found to increase HMGB1 expression, infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts in the presence of propofol pretreatment. These in vivo findings were reproduced in vivo that knockdown of miRNA-451 48 hr before H/R injuries increased HMGB1 expression and H/R-induced apoptosis in cultured H9C2 supplemented with propofol. In addition, luciferase activity assays and gain-of-function studies found that propofol could decrease HMGB1, the target of miRNA-541. Taken together our findings provide a first demonstration that propofol-mediated cardioprotection against MIRI is dependent of microRNA-451/HMGB1. The study provides a novel target to prevent I/R injury during propofol anesthesia.  相似文献   

18.
Renal ischemia/reperfusion (I/R) injury resulting in acute renal failure, is a major clinical problem due to its high mortality rate. Renal I/R increases the reactive oxygen species, secretion of inflammatory cytokines, chemokines and other factors. This suggests that initiating the apoptosis process in the presence of oxidative stress may play a role in life-threatening conditions, such as ischemia. Ischemia reperfusion-induced renal damage can result in renal failure and death. Although many treatment procedures have been carried out to reduce or destroy renal I/R damage in experimental models, so far, a routine method of treatment has not yet been found. For this reason, the current study was planned to investigate the possible protective effects of evodiamine on tissue damage caused by ischemia-reperfusion in kidney tissue in rats and an experimental renal I/R model was used for this purpose. Four groups were formed in the study: the control, sham control, ischemia reperfusion (I/R), and evodiamine (10 mg/kg) + I/R groups. The effects of evodiamine against kidney I/R injury were investigated. TAS (total oxidant status), TOS (total oxidant status), interleukin-1β (IL-1β), IL-6, IL-10 and tumor necrosis factor-α levels were determined by enzyme-linked immunosorbent assay. The oxidative stress index was calculated from TAS and TOS levels. In addition, the renal ischemia reperfusion injury was examined histopathologically. The IL-10 and TAS levels in the I/R group decreased when compared with the control and Sham groups, while these levels increased in the evodiamine group. Histopathologic examination revealed that caspase 3 and nuclear factor-κB levels decreased in the evodiamine group compared with the I/R group. The application of evodiamine significantly reduced ischemia reperfusion-induced kidney damage due to its antioxidant, anti-inflammatory and antiapoptotic properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号