首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

2.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

3.
Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.  相似文献   

4.
African mole-rats are subterranean rodents, which rarely if ever leave the safety of their burrow systems. The environment of the burrows is humid, with relatively stable temperatures, and may have a hypoxic and hypercapnic atmosphere. One of crucial problems related to the subterranean way of life in mammals is avoidance of overheating, because traditional mammalian cooling mechanisms are not effective under high humidity. In African mole-rats, a variety of adaptations have evolved in response to this and other challenges of the underground ecotope. Traditionally, attention has been devoted mainly to the naked mole-rat Heterocephalus glaber, which became popular as a result of its eusociality and absence of fur, both being unique phenomena in small mammals. Despite more recent research, information on other species is still relatively limited and patchy. I review the results of studies on African mole-rats that are relevant for the understanding of their energetics and thermal biology. Attention is paid to the parameters of the burrow environment, which represent the main selection pressures shaping their physiology. In addition, an overview is given of the morphological, physiological and behavioural adaptations helping mole-rats to face temperature extremes, mechanisms by which they deal with a surplus of metabolic heat and how changes in ambient temperature influence their daily activity. The naked mole-rat is compared to its furred relatives to determine whether this species is really exceptional from the point of thermal biology. An ordination analysis was conducted using published data on mole-rat body temperature, thermoneutral zone, resting metabolic rate and thermal conductance. Most of the variability in these characteristics was found to be explained by body mass, followed by temperature characteristics of climate, but not precipitation, of the species distributional ranges. This analysis shows that the naked mole-rat is comparable to the other mole-rat species in these physiological characteristics.  相似文献   

5.
Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.  相似文献   

6.
Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals.  相似文献   

7.
Brand A  Smith ES  Lewin GR  Park TJ 《PloS one》2010,5(12):e15162
Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to na?ve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.  相似文献   

8.

Background

African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure.

Methodology/Principal Findings

We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate.

Conclusions/Significance

The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.  相似文献   

9.

Rodents include both the cancer-susceptible short-lived mouse and the two unrelated cancer-resistant long-lived mole-rats. In this work, their genomes were analyzed with the goal to reveal pathways enriched in genes, which are more similar between the mole-rats than between the mouse and the naked mole-rat. The pathways related to cell cycle control were prominent. They include external signal transduction and all cell cycle stages. There are several stem cell pathways among them. The other enriched pathways involve ubiquitin-dependent protein degradation, immunity, mRNA splicing, and apoptosis. The ubiquitin-dependent protein degradation is a core of network of enriched pathways. However, this phenomenon is not specific for the mouse and the mole-rats. The other muroid species show features similar to the mouse, whereas the non-muroid rodents and the human show features similar to the mole-rats. The higher ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) indicates the accelerated evolution of revealed pathways in the muroid rodents (except the blind mole-rat). Paradoxically, the dN/dS averaged over the whole genome is lower in the muroids, i.e., the purifying selection is generally stronger in them. In practical sense, these data suggest caveat for using muroid rodents (mouse, rat, and hamsters) as biomedical models of human conditions involving cell cycle and show the network of pathways where muroid genes are most different (compared with non-muroid) from human genes. The guinea pig is emphasized as a more suitable rodent model for biomedical research involving cell cycle.

  相似文献   

10.
After the discovery of eusociality in the naked mole-rat, it was proposed that inbreeding and high colony relatedness in this species were the major underlying factors driving cooperative breeding in African molerats. By contrast, field and laboratory studies of the eusocial Damaraland mole-rat (Cryptomys damarensis) have raised the possibility that this species is an obligate outbreeder, although the build-up of inbreeding over several generations could still occur. Using microsatellite markers, we show that most breeding pairs in wild colonies of the Damaraland mole-rat are indeed unrelated (R = 0.02 +/- 0.04) and that mean colony relatedness (R = 0.46 +/- 0.01), determined across 15 colonies from three separate populations, is little more than half that previously identified in naked mole-rats. This finding demonstrates that normal familial levels of relatedness are sufficient for the occurrence of eusociality in mammals. Variation in the mean colony relatedness among populations provides support both for the central role played by ecological constraints in cooperative breeding and for the suggestion that inbreeding in naked mole-rats is a response to extreme constraints on dispersal. Approaches that determine the relative importance of an array of extrinsic factors in driving social evolution in African mole-rats are now required.  相似文献   

11.
Inbreeding is typically detrimental to fitness. However, some animal populations are reported to inbreed without incurring inbreeding depression, ostensibly due to past "purging" of deleterious alleles. Challenging this is the position that purging can, at best, only adapt a population to a particular environment; novel selective regimes will always uncover additional inbreeding load. We consider this in a prominent test case: the eusocial naked mole-rat (Heterocephalus glaber), one of the most inbred of all free-living mammals. We investigated factors affecting mortality in a population of naked mole-rats struck by a spontaneous, lethal coronavirus outbreak. In a multivariate model, inbreeding coefficient strongly predicted mortality, with closely inbred mole-rats (F> or = 0.25) over 300% more likely to die than their outbred counterparts. We demonstrate that, contrary to common assertions, strong inbreeding depression is evident in this species. Our results suggest that loss of genetic diversity through inbreeding may render populations vulnerable to local extinction from emerging infectious diseases even when other inbreeding depression symptoms are absent.  相似文献   

12.
Naked mole-rats are fossorial, eusocial rodents that naturally exhibit high levels of inbreeding. Persistent inbreeding in animals often results in a substantial decline in fitness and, thus, dispersal and avoidance of kin as mates are two common inbreeding avoidance mechanisms. In the naked mole-rat evidence for the former has recently been found. Here we address the latter mechanism by investigating kin recognition and female mate choice using a series of choice tests in which the odour, social and mate preferences of females were determined. Discrimination by females appears to be dependent on their reproductive status. Reproductively active females prefer to associate with unfamiliar males, whereas reproductively inactive females do not discriminate. Females do not discriminate between kin and non-kin suggesting that the criterion for recognition is familiarity, not detection of genetic similarity per se. In the wild, naked mole-rats occupy discrete burrow systems and dispersal and mixing with non-kin is thought to be comparatively rare. Thus, recognition by familiarity may function as a highly efficient kin recognition mechanism in the naked mole-rat. A preference by reproductively active females for unfamiliar males is interpreted as inbreeding avoidance. These findings suggest that, despite an evolutionary history of close inbreeding, naked mole-rats may not be exempt from the effects of inbreeding depression and will attempt to outbreed should the opportunity arise.  相似文献   

13.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307-317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4delta), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87-97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

14.
《Chronobiology international》2013,30(8):1532-1545
African mole-rats (family Bathyergidae) are strictly subterranean rodent species that are rarely exposed to environmental light. Morphological and physiological adaptations to the underground environment include a severely reduced eye size and regressed visual system. Responses of the circadian system to light, however, appear to be intact, since mole-rats are able to entrain their circadian activity rhythms to the light-dark cycle and light induces Fos expression in the suprachiasmatic nucleus (SCN). Social organization varies from solitary species to highly elaborated eusocial structures, characterized by a distinct division of labor and in which one reproductive female regulates the behavior and reproductive physiology of other individuals in the colony. The authors studied light-induced Fos expression in the SCN to increasing light intensities in four mole-rat species, ranging from strictly solitary to highly social. In the solitary Cape mole-rat, light induces significant Fos expression in the SCN, and the number of Fos-immunopositive cells increases with increasing light intensity. In contrast, Fos induction in the SCN of social species was slightly greater than, but not statistically different from, the dark-control animals as is typical of most rodents. One species showed a trend for an increase in expression with increased light, whereas a second species showed no trend in expression. In the naked mole-rat, Fos expression appeared higher in the dark-controls than in the animals exposed to light, although the differences in Fos expression were not significant. These results suggest a gradient in the sensitivity of the circadian system to light in mole-rats, with a higher percentage of individuals that are unresponsive to light in correlation with the degree of sociality. In highly social species, such as the naked mole-rat that live in a relatively stable subterranean milieu in terms of food availability, temperature, constant darkness, and devoid of 24-h cyclic environmental cues, the temporal coordination of rest-wake activities may be dependent on social interactions and social status rather than on photic regulation of the circadian timing system. (Author correspondence: )  相似文献   

15.
16.
17.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307–317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4δ), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87--97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

18.
Mitochondrial DNA (mtDNA) sequence variation was examined in eight taxa of the African rodent family Bathyergidae, as well as in two taxa representative of the Old-World hystricognathid rodent families Petromyidae and Thryonomyidae. A total of 812 bp, constituting domains I-III of the 12S ribosomal rRNA gene, were compared for each taxon. The high levels of intrafamilial mtDNA sequence divergence observed (average 16.8, range 3.5-23.2) support an ancient origin for the five genera, 20-38 Mya. These data do not support the current subfamilial groupings of the Bathyergidae. The eastern African naked mole-rat, Heterocephalus glaber, is the most basal representative of the family, with the silvery mole-rat, Heliophobius, being the next most basal. South African forms [dune, common, and cape mole-rats (Bathyergus, Cryptomys, and Georychus, respectively)] group together. The independent origin of the common mole-rat, relative to the naked mole-rat, suggests that complex social systems evolved in parallel along different bathyergid lineages. The 12S rRNA gene is not evolving at a higher rate within the rodent lineages, relative to that seen for artiodactyls and primates. Bathyergid rodents appear to fall at an extreme end of the spectrum of mammalian variation, with respect to both transition/transversion ratios and divergence, showing much lower transition/transversion ratios than those previously reported for intrafamilial comparisons.  相似文献   

19.
The naked mole-rat (Heterocephalus glaber) is one of the two known mammalian species that live in a eusocial population structure. Here we investigate the exceptionally long gestation period of 70 days observed in the mole-rat queen. The course of seven successful pregnancies in two individuals was recorded in a colony of captive naked mole-rats using ultrasound biomicroscopy (UBM) and 3D-ultrasonography. We establish a catalogue of basic reference ultrasound data for this species by describing the ultrasonographic appearance of reproductive organs, calculating growth curves to predict gestational age and defining ultrasonographic milestones to characterize pregnancy stages. Mean litter size was 10.9±2.7, of which 7.2±1.5 survived the weaning period. Mean interbirth interval was 128.8±63.0 days. The reproductive success in our colony did not differ from previously published data. In the queen the active corpora lutea had an anechoic, fluid filled centre. Using UBM, pregnancy could be detected 53 days before parturition. The period of embryonic development is assumed to last until 30 days before parturition. Embryonic resorptions were detected frequently in the queen, indicating that this might be an ordinary event in this species. We discuss the extraordinary long gestation period of this small rodent and postulate that the long gestation is beneficial to both the eusocial structure and longevity. An increased litter size, twice as large as for other rodents of similar size, seemingly compensates for the doubling of pregnancy length. We demonstrate that the lifetime reproductive effort of a naked mole-rat queen is equivalent to the mass of offspring that would be produced if all of the females of a colony would be reproducing.  相似文献   

20.
A 900- to 1100-bp fragment encompassing intron 1 of the nuclear transthyretin (prealbumin) gene was examined in 12 taxa of Old World hystricognath rodents of the families Bathyergidae, Petromuridae, Thryonomyidae, and Hystricidae. Within the Bathyergidae, Heterocephalus glaber (naked mole-rat) was basal, and the other East African species, Heliophobius argenteocinereus (silvery mole-rat), was sister to a southern African clade containing Bathyergus, Cryptomys, and Georychus (dune, common, and cape mole-rats). These results are congruent with studies using mitochondrial 12S rRNA gene sequences. A combined analysis of transthyretin and 12S rRNA data resulted in a well-supported topology with better resolution than either gene analyzed separately. These data support the findings by M. W. Allard and R. L. Honeycutt (1992, Mol. Biol. Evol. 9: 27-40) and R. L. Honeycutt (1992, Am. Sci. 80: 43-53) that complex social systems evolved independently at least twice, in the common and naked mole-rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号