首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biogeographic and phylogenetic study of Cyrtandra (Gesneriaceae) in the Sundaland region (Borneo and Peninsular Malaysia) and the Philippines using nuclear ribosomal (ITS) DNA sequence data reveals a major division between the Cyrtandra floras of Sundaland and the Philippines. Palawan, the most westerly of the Philippine islands, emerges as an area of mixing between these two. The Bornean element in the Cyrtandra flora of Palawan (two species in our sample) appears to result from recent (i.e. Pleistocene) dispersal from Borneo. The remaining seven species sampled from Palawan are most closely related to those from elsewhere in the Philippines. However, the Palawan clade is sister to the other Philippine taxa, suggesting an ancient (possibly Pliocene) vicariance event. Huxley's line–a zoogeographic boundary placing Palawan and Borneo together–receives some support from this study as there is evidence of recent dispersal of Bornean flora into Palawan. However, in terms of more ancient biogeographic patterning of the region, Palawan has stronger links with the other Philippine islands.  相似文献   

2.
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters.  相似文献   

3.
Phylogenetic relationships of the Oriental semiaquatic lygosomine skinks of the genus Tropidophorus were inferred from 1219 base positions of mitochondrial 12S and 16S rRNA genes. Results of the phylogenetic analyses incorporating data for representatives of other lygosomine genera indicated that the basal phylogenetic split within Tropidophorus separated a clade of continental Indochinese species exclusive of T. cocincinensis and T. microlepis from one comprising T. cocincinensis , T. microlepis and species from Borneo, Sulawesi and the Philippines. Of the latter group, the two continental species form the sister taxon to a clade comprising the island species. Diversification among species in Indochina and among Borneo, the Philippines and Sulawesi was likely concentrated in the Miocene, with no apparent dispersal among these regions during the Pleistocene. The body depression recognized in several Indochinese species is likely to have occurred twice in parallel as an adaptation to saxicolous habitats.  相似文献   

4.
The Anisophylleaceae comprise 29-34 species of shrubs and trees occurring in lowland forests and swamps in tropical Africa, Asia, and South America. These species are placed in four genera with disjunct geographic distributions; Anisophyllea has 25-30 species in South America, Africa, and Malesia; Combretocarpus has one species in Sumatra and Borneo; Poga one species in equatorial Africa; and Polygonanthus two in the Amazon Basin. Here we use a phylogeny based on six nuclear and plastid loci sequenced for 15 species representing the four genera to infer their relationships and the relative and absolute ages of the range disjunctions. Combretocarpus is sister to the other three genera, and Polygonanthus then sister to Poga and Anisophyllea. Ansiophyllea, represented by 12 species from all three continents, is monophyletic. A relaxed Bayesian clock calibrated with the oldest fossils from a relevant outgroup, Tetramelaceae, suggests that the disjunctions between Combretocarpus, Poga, and Polygonanthus date back to the Cretaceous, Mid-, and Upper Eocene, whereas the intercontinental disjunctions within Anisophyllea appear to date back only some 22-23 million years and thus probably result from long-distance dispersal.  相似文献   

5.
The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.  相似文献   

6.
BackgroundPaper mulberry (Broussonetia papyrifera (L.) L''Hér. ex Vent) is a dioecious tree native to East Asia and mainland Southeast-Asia, introduced prehistorically to Polynesia as a source of bark fiber by Austronesian-speaking voyagers. In Oceania, trees are coppiced and harvested for production of bark-cloth, so flowering is generally unknown. A survey of botanical records of paper mulberry revealed a distributional disjunction: the tree is apparently absent in Borneo and the Philippines. A subsequent study of chloroplast haplotypes linked paper mulberry of Remote Oceania directly to a population in southern Taiwan, distinct from known populations in mainland Southeast-Asia.MethodologyWe describe the optimization and use of a DNA marker designed to identify sex in paper mulberry. We used this marker to determine the sex distribution in selected localities across Asia, Near and Remote Oceania. We also characterized all samples using the ribosomal internal transcribed spacer sequence (ITS) in order to relate results to a previous survey of ITS diversity.ResultsIn Near and Remote Oceania, contemporary paper mulberry plants are all female with the exception of Hawaii, where plants of both sexes are found. In its natural range in Asia, male and female plants are found, as expected. Male plants in Hawaii display an East Asian ITS genotype, consistent with modern introduction, while females in Remote Oceania share a distinctive variant.ConclusionsMost paper mulberry plants now present in the Pacific appear to be descended from female clones introduced prehistorically. In Hawaii, the presence of male and female plants is thought to reflect a dual origin, one a prehistoric female introduction and the other a modern male introduction by Japanese/Chinese immigrants. If only female clones were dispersed from a source-region in Taiwan, this may explain the absence of botanical records and breeding populations in the Philippines and Borneo, and Remote Oceania.  相似文献   

7.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

8.
The use of diverse data sets in phylogenetic studies aiming for understanding evolutionary histories of species can yield conflicting inference. Phylogenetic conflicts observed in animal and plant systems have often been explained by hybridization, incomplete lineage sorting (ILS), or horizontal gene transfer. Here, we used target enrichment data, species tree, and species network approaches to infer the backbone phylogeny of the family Caprifoliaceae, while distinguishing among sources of incongruence. We used 713 nuclear loci and 46 complete plastome sequence data from 43 samples representing 38 species from all major clades to reconstruct the phylogeny of the family using concatenation and coalescence approaches. We found significant nuclear gene tree conflict as well as cytonuclear discordance. Additionally, coalescent simulations and phylogenetic species network analyses suggested putative ancient hybridization among subfamilies of Caprifoliaceae, which seems to be the main source of phylogenetic discordance. Ancestral state reconstruction of six morphological characters revealed some homoplasy for each character examined. By dating the branching events, we inferred the origin of Caprifoliaceae at approximately 66.65 Ma in the late Cretaceous. By integrating evidence from molecular phylogeny, divergence times, and morphology, we here recognize Zabelioideae as a new subfamily in Caprifoliaceae. This work shows the necessity of using a combination of multiple approaches to identify the sources of gene tree discordance. Our study also highlights the importance of using data from both nuclear and plastid genomes to reconstruct deep and shallow phylogenies of plants.  相似文献   

9.
Eupatorium were examined by sequencing the internal transcribed spacers (ITS) of nuclear ribosomal DNA and restriction site analysis of chloroplast DNA. Molecular data provided strong evidence that (1) this genus originated in North America, (2) the genus diverged into three morphological species groups, Eutrochium, Traganthes and Uncasia in North America, and (3) one of the North American Uncasia lineages migrated into temperate Europe and eastern Asia over the Bering land bridge. The estimated divergence times support a late Miocene to early Pliocene migration from North America to Eurasia via the Bering land bridge. A European species was sister to all of the eastern Asian species examined. The disjunct distribution pattern of the genus Eupatorium is incongruent with the classical Arcto-Tertiary geoflora concept. Received 13 September 1999/ Accepted in revised form 4 January 2000  相似文献   

10.
Aim Colonization of the Philippines from Taiwan or neighbouring areas of the Asian mainland has been proposed as an important source of diversity for some plant and animal groups in the northern Philippines. Previous inferences, however, were based on taxonomic groupings, which sometimes fail to reflect phylogenetic history. Here, we test for colonization of the Philippines from the north in a group of shrews (Soricomorpha: Crocidura) using explicit inferences of evolutionary history. Location Southeast Asia. Methods We estimate the phylogenetic relationships of populations of shrews from Batan and Sabtang islands in the northern Philippines using DNA sequences from two mitochondrial genes and three nuclear loci. We employ topology tests to evaluate the possible relationships of these shrews to species from throughout Southeast Asia. Results We find conclusive evidence that shrews from Batan and Sabtang are closely related to Crocidura tanakae from Taiwan and additional specimens from the Asian mainland. Bayesian and frequentist topology tests using alignments of individual loci strongly reject any notion that shrews from Batan and Sabtang are part of the main Philippine radiation of Crocidura, indicating that the northernmost Philippine islands were almost certainly colonized by shrews from Taiwan or mainland Asia. Main conclusions Our results provide the first compelling evidence for colonization of the Philippine archipelago by a terrestrial vertebrate via a northern route. Invasion of the northern Philippines by shrews, however, did not lead to further range expansion to more southerly parts of the Philippines. This study, combined with previous results, documents that Crocidura colonized the Philippines at least three times. However, only one of these invasions led to in situ speciation and ubiquity across the archipelago. Our findings are part of a growing body of literature suggesting that oceanic archipelagos are often colonized multiple times by groups of closely related species, and occasionally from multiple sources.  相似文献   

11.

Background

The complex history of Southeast Asian islands has long been of interest to biogeographers. Dispersal and vicariance events in the Pleistocene have received the most attention, though recent studies suggest a potentially more ancient history to components of the terrestrial fauna. Among this fauna is the enigmatic archaeobatrachian frog genus Barbourula, which only occurs on the islands of Borneo and Palawan. We utilize this lineage to gain unique insight into the temporal history of lineage diversification in Southeast Asian islands.

Methodology/Principal Findings

Using mitochondrial and nuclear genetic data, multiple fossil calibration points, and likelihood and Bayesian methods, we estimate phylogenetic relationships and divergence times for Barbourula. We determine the sensitivity of focal divergence times to specific calibration points by jackknife approach in which each calibration point is excluded from analysis. We find that relevant divergence time estimates are robust to the exclusion of specific calibration points. Barbourula is recovered as a monophyletic lineage nested within a monophyletic Costata. Barbourula diverged from its sister taxon Bombina in the Paleogene and the two species of Barbourula diverged in the Late Miocene.

Conclusions/Significance

The divergences within Barbourula and between it and Bombina are surprisingly old and represent the oldest estimates for a cladogenetic event resulting in living taxa endemic to Southeast Asian islands. Moreover, these divergence time estimates are consistent with a new biogeographic scenario: the Palawan Ark Hypothesis. We suggest that components of Palawan''s terrestrial fauna might have “rafted” on emergent portions of the North Palawan Block during its migration from the Asian mainland to its present-day position near Borneo. Further, dispersal from Palawan to Borneo (rather than Borneo to Palawan) may explain the current day disjunct distribution of this ancient lineage.  相似文献   

12.
Most plant phylogenetic inference has used DNA sequence data from the plastid genome. This genome represents a single genealogical sample with no recombination among genes, potentially limiting the resolution of evolutionary relationships in some contexts. In contrast, nuclear DNA is inherently more difficult to employ for phylogeny reconstruction because major mutational events in the genome, including polyploidization, gene duplication, and gene extinction can result in homologous gene copies that are difficult to identify as orthologs or paralogs. Gene tree parsimony (GTP) can be used to infer the rooted species tree by fitting gene genealogies to species trees while simultaneously minimizing the estimated number of duplications needed to reconcile conflicts among them. Here, we use GTP for five nuclear gene families and a previously published plastid data set to reconstruct the phylogenetic backbone of the aquatic plant family Pontederiaceae. Plastid-based phylogenetic studies strongly supported extensive paraphyly of Eichhornia (one of the four major genera) but also depicted considerable ambiguity concerning the true root placement for the family. Our results indicate that species trees inferred from the nuclear genes (alone and in combination with the plastid data) are highly congruent with gene trees inferred from plastid data alone. Consideration of optimal and suboptimal gene tree reconciliations place the root of the family at (or near) a branch leading to the rare and locally restricted E. meyeri. We also explore methods to incorporate uncertainty in individual gene trees during reconciliation by considering their individual bootstrap profiles and relate inferred excesses of gene duplication events on individual branches to whole-genome duplication events inferred for the same branches. Our study improves understanding of the phylogenetic history of Pontederiaceae and also demonstrates the utility of GTP for phylogenetic analysis.  相似文献   

13.
Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.  相似文献   

14.
Bandicoots (Peramelemorphia) are a major order of australidelphian marsupials, which despite a fossil record spanning at least the past 25 million years and a pandemic Australasian range, remain poorly understood in terms of their evolutionary relationships. Many living peramelemorphians are critically endangered, making this group an important focus for biological and conservation research. To establish a phylogenetic framework for the group, we compiled a concatenated alignment of nuclear and mitochondrial DNA sequences, comprising representatives of most living and recently extinct species. Our analysis confirmed the currently recognised deep split between Macrotis (Thylacomyidae), Chaeropus (Chaeropodidae) and all other living bandicoots (Peramelidae). The mainly New Guinean rainforest peramelids were returned as the sister clade of Australian dry-country species. The wholly New Guinean Peroryctinae was sister to Echymiperinae. The poorly known and perhaps recently extinct Seram Bandicoot (Rhynchomeles) is sister to Echymipera. Estimates of divergence times from relaxed-clock Bayesian methods suggest that living bandicoots originated in the late Oligocene or early Miocene, much earlier than currently thought based on fossils. Subsequent radiations within Peramelemorphia probably took place on the Australian mainland during the Miocene, with diversification of rainforest taxa on the newly emergent New Guinean landmasses through the middle-late Miocene and complete establishment of modern lineages by the early Pliocene.  相似文献   

15.
16.
Schiedea (Caryophyllaceae) is a monophyletic genus of 34 species, all endemic to the Hawaiian Islands, that arose from a single colonization, providing one of the best examples of adaptive radiation in Hawai'i. Species utilize a range of habitats and exhibit a variety of growth forms and transitions in breeding systems from hermaphroditism toward dimorphism or autogamy. Our study included the most thorough sampling to date: 2-5 individuals per species and 4 independent genetic partitions: eight plastid and three low-copy nuclear loci (9217bps), allowing a three-locus BEST species tree. Despite incomplete resolution at the tips, our results support monophyly for each extant species. Gene trees revealed several clear cases of cytonuclear incongruence, likely created by interspecific introgression. Conflict occurs at the divergence of section Alphaschiedea as well as at the tips. Ages inferred from a BEAST analysis allow an original colonization onto either Nihoa or Kauaì and inform some aspects of inter-island migrations. We suggest that several hard polytomies on the species tree are biologically realistic, signifying either nearly simultaneous speciation or historical introgressive hybridization. Based on inferred node ages that exceed expected coalescent times, we propose that undetected nuclear introgression may play a larger role than incomplete lineage sorting in sections Schiedea and Mononeura.  相似文献   

17.
The goals of this study were to reconstruct the phylogeny of Prunus subgenus Laurocerasus section Mesopygeum and to provide a preliminary assessment of its spatio‐temporal diversification in the Malesian region. We inferred the phylogeny using nuclear ITS and ETS and plastid psbA‐trnH, rps16, rpl16, and trnC‐petN sequences. Our analyses support the monophyly of sect. Mesopygeum. Within sect. Mesopygeum, we identified four main subclades: (i) Prunus lancilimba from continental Asia; (ii) Prunus ruthii from Malay Peninsula; (iii) a subclade comprising species from areas centered on the Sunda shelf and also a few species from continental Asia and Wallacea; and (iv) a subclade composed of species from areas of the Sahul shelf, with a small number of taxa also from areas of the Sunda shelf, continental Asia, and the Philippines. We estimated that sect. Mesopygeum originated in continental Asia at c. 44.71 Mya (95% HPD: 31.66–46.90). Nine dispersals between major geographic areas were inferred. From continental Asia, three and two dispersals were inferred to the Sunda shelf and the Sahul shelf in the mid‐Oligocene, respectively. Two dispersals were inferred from the Sahul shelf region to the Sunda shelf in late Oligecene and early Miocene, respectively. There were also two dispersals inferred from the Sunda shelf region, one to the Philippines and one to Wallacea, in the middle and late Miocene, respectively. The diversification in sect. Mesopygeum was likely driven by active geologic events and orogenies in the Neogene in the Malesian region.  相似文献   

18.
Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.  相似文献   

19.
Aim Using molecular data and dental features, we investigated the genetic and morphological diversity among species of palm civets in the genus Paradoxurus, with a focus on the common palm civet, Paradoxurus hermaphroditus (Carnivora, Viverridae), in order to address biogeographic scenarios and provide recommendations for a taxonomic revision. Location Asia: Pakistan to the Lesser Sunda Islands. Methods We investigated the genetic diversity within Paradoxurus using two mitochondrial (cytochrome b, control region) and one nuclear (intron 7 of the β‐fibrinogen) markers. We used samples from 85 individuals of P. hermaphroditus (including 20 museum specimens) and one representative of each of the other species in the genus Paradoxurus: Paradoxurus jerdoni and Paradoxurus zeylonensis. DNA sequences were analysed using phylogenetic and haplotype network methods, and divergence dates were estimated for the clades retrieved. Furthermore, we examined dental characters from a large series of specimens and compared the morphological variation with the molecular data. Results Our phylogenetic analyses revealed that P. hermaphroditus is paraphyletic. We identified three major lineages distributed: (1) in the Indian subcontinent, south China, Hainan and in areas above 200 m in Indochina; (2) in Peninsular Malaysia, Java, Sumatra and in areas below 200 m in Indochina; and (3) in Borneo, the Philippines and the Mentawai archipelago. Our morphological observations were congruent with these three molecular lineages. Divergence date estimates inferred a Pliocene origin for Paradoxurus (2.8–5.7 Ma), with the three main clades diversifying from the mid–Early Pliocene to the end of the Pliocene. We suggest that the flooding of the Isthmus of Kra during the Pliocene was a major event shaping the diversification of Paradoxurus palm civets. We also hypothesize that the elevational segregation of the two lineages on the mainland could have resulted from the vegetational changes that were induced by Late Pliocene glacial episodes. Main conclusions The Isthmus of Kra is a major boundary between two major lineages of P. hermaphroditus. There is a need for a taxonomic revision for P. hermaphroditus, and we suggest that this species should be split into at least three species.  相似文献   

20.
Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo ( Bubalus arnee ). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28 000 to 87 000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland southeast Asia and then to the western islands of Indonesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号