首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparing and computing distances between phylogenetic trees are important biological problems, especially for models where edge lengths play an important role. The geodesic distance measure between two phylogenetic trees with edge lengths is the length of the shortest path between them in the continuous tree space introduced by Billera, Holmes, and Vogtmann. This tree space provides a powerful tool for studying and comparing phylogenetic trees, both in exhibiting a natural distance measure and in providing a euclidean-like structure for solving optimization problems on trees. An important open problem is to find a polynomial time algorithm for finding geodesics in tree space. This paper gives such an algorithm, which starts with a simple initial path and moves through a series of successively shorter paths until the geodesic is attained.  相似文献   

2.
In an attempt to define the phylogenetical relationship among 17 phenotypically related species of genera Enterobacter, Pantoea, Serratia, Klebsiella and Erwinia, we determined almost all of their groE operon sequences using the polymerase chain reaction direct sequencing method. The number of nucleotide substitutions per site was 0.12+/-0.030. The value was 3.6-fold higher than that of 16S rDNA. As a result, we were successful in constructing molecular phylogenetic trees which had a finer resolution than that based on the 16S rDNA sequences. The phylogenetic trees based on the nucleotide sequences and deduced amino acid sequences of groE operons indicated that the members of genera Enterobacter, Pantoea and Klebsiella were closely related to each other, while Serratia and Erwinia species except Erwinia carotovora, made distinct clades. The close relationship between Enterobacter aerogenes and Klebsiella pneumoniae, that had been suggested by biochemical tests and DNA hybridization, was also supported by our molecular phylogenetic trees.  相似文献   

3.
MOTIVATION: In recent years there has been increased interest in producing large and accurate phylogenetic trees using statistical approaches. However for a large number of taxa, it is not feasible to construct large and accurate trees using only a single processor. A number of specialized parallel programs have been produced in an attempt to address the huge computational requirements of maximum likelihood. We express a number of concerns about the current set of parallel phylogenetic programs which are currently severely limiting the widespread availability and use of parallel computing in maximum likelihood-based phylogenetic analysis. RESULTS: We have identified the suitability of phylogenetic analysis to large-scale heterogeneous distributed computing. We have completed a distributed and fully cross-platform phylogenetic tree building program called distributed phylogeny reconstruction by maximum likelihood. It uses an already proven maximum likelihood-based tree building algorithm and a popular phylogenetic analysis library for all its likelihood calculations. It offers one of the most extensive sets of DNA substitution models currently available. We are the first, to our knowledge, to report the completion of a distributed phylogenetic tree building program that can achieve near-linear speedup while only using the idle clock cycles of machines. For those in an academic or corporate environment with hundreds of idle desktop machines, we have shown how distributed computing can deliver a 'free' ML supercomputer.  相似文献   

4.
The accuracy of the Fitch method for reconstructing ancestral states on ultrametric phylogenetic trees is studied. Two recurrence relations for computing the accuracy are given here. Using these relations, we analyze the convergence of the accuracy of the Fitch method for reconstructing the root state on a complete binary tree of 2 n leaves as n goes to infinity, present a closed-form formula for the accuracy on ultrametric comb trees, and provide a lower bound on the accuracy on arbitrary ultrametric phylogenetic trees.  相似文献   

5.
细胞色素分子疏水性与进化的关系   总被引:1,自引:1,他引:0  
本文在先前研究结果的基础上,通过对细胞色素分子一维结构间疏水相似性的计算,建立了相应的分子系统树,并对细胞色素分子间的进化关系进行了探讨。结果表明,从蛋白质分子的疏水相似性和非线性三维结构来研究分子间的进货关系,不仅得到了与用其它方法所得到的结果基本一致的结论,而且还在一定程度上克服了其它一些方法的局限性,取得了较佳的结果。  相似文献   

6.
Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at http://bioinfo.uib.es/~recerca/phylonetworks/mudistance/.  相似文献   

7.

Background

When inferring phylogenetic trees different algorithms may give different trees. To study such effects a measure for the distance between two trees is useful. Quartet distance is one such measure, and is the number of quartet topologies that differ between two trees.

Results

We have derived a new algorithm for computing the quartet distance between a pair of general trees, i.e. trees where inner nodes can have any degree ≥ 3. The time and space complexity of our algorithm is sub-cubic in the number of leaves and does not depend on the degree of the inner nodes. This makes it the fastest algorithm so far for computing the quartet distance between general trees independent of the degree of the inner nodes.

Conclusions

We have implemented our algorithm and two of the best competitors. Our new algorithm is significantly faster than the competition and seems to run in close to quadratic time in practice.  相似文献   

8.
We describe a novel method for efficient reconstruction of phylogenetic trees, based on sequences of whole genomes or proteomes, whose lengths may greatly vary. The core of our method is a new measure of pairwise distances between sequences. This measure is based on computing the average lengths of maximum common substrings, which is intrinsically related to information theoretic tools (Kullback-Leibler relative entropy). We present an algorithm for efficiently computing these distances. In principle, the distance of two l long sequences can be calculated in O(l) time. We implemented the algorithm using suffix arrays our implementation is fast enough to enable the construction of the proteome phylogenomic tree for hundreds of species and the genome phylogenomic forest for almost two thousand viruses. An initial analysis of the results exhibits a remarkable agreement with "acceptable phylogenetic and taxonomic truth." To assess our approach, our results were compared to the traditional (single-gene or protein-based) maximum likelihood method. The obtained trees were compared to implementations of a number of alternative approaches, including two that were previously published in the literature, and to the published results of a third approach. Comparing their outcome and running time to ours, using a "traditional" trees and a standard tree comparison method, our algorithm improved upon the "competition" by a substantial margin. The simplicity and speed of our method allows for a whole genome analysis with the greatest scope attempted so far. We describe here five different applications of the method, which not only show the validity of the method, but also suggest a number of novel phylogenetic insights.  相似文献   

9.
Yu Y  Degnan JH  Nakhleh L 《PLoS genetics》2012,8(4):e1002660
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.  相似文献   

10.
Inferring phylogenetic trees for individual homologous gene families is difficult because alignments are often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes. To overcome these challenges, species-tree-aware methods also leverage information from a putative species tree. However, only few methods are available that implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these methods often require expensive data preprocessing (e.g., computing bootstrap trees) and rely on approximations and heuristics that limit the degree of tree space exploration. Here, we present GeneRax, the first maximum likelihood species-tree-aware phylogenetic inference software. It simultaneously accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer, and loss relying on established maximum likelihood optimization algorithms. GeneRax can infer rooted phylogenetic trees for multiple gene families, directly from the per-gene sequence alignments and a rooted, yet undated, species tree. We show that compared with competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in terms of relative Robinson–Foulds distance. On empirical data sets, GeneRax is the fastest among all tested methods when starting from aligned sequences, and it infers trees with the highest likelihood score, based on our model. GeneRax completed tree inferences and reconciliations for 1,099 Cyanobacteria families in 8 min on 512 CPU cores. Thus, its parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax (last accessed June 17, 2020).    相似文献   

11.
Protein co-evolution, co-adaptation and interactions   总被引:2,自引:0,他引:2  
Pazos F  Valencia A 《The EMBO journal》2008,27(20):2648-2655
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution.  相似文献   

12.

Phylogenetic networks generalise phylogenetic trees and allow for the accurate representation of the evolutionary history of a set of present-day species whose past includes reticulate events such as hybridisation and lateral gene transfer. One way to obtain such a network is by starting with a (rooted) phylogenetic tree T, called a base tree, and adding arcs between arcs of T. The class of phylogenetic networks that can be obtained in this way is called tree-based networks and includes the prominent classes of tree-child and reticulation-visible networks. Initially defined for binary phylogenetic networks, tree-based networks naturally extend to arbitrary phylogenetic networks. In this paper, we generalise recent tree-based characterisations and associated proximity measures for binary phylogenetic networks to arbitrary phylogenetic networks. These characterisations are in terms of matchings in bipartite graphs, path partitions, and antichains. Some of the generalisations are straightforward to establish using the original approach, while others require a very different approach. Furthermore, for an arbitrary tree-based network N, we characterise the support trees of N, that is, the tree-based embeddings of N. We use this characterisation to give an explicit formula for the number of support trees of N when N is binary. This formula is written in terms of the components of a bipartite graph.

  相似文献   

13.
The increasing use of phylogeny in biological studies is limited by the need to make available more efficient tools for computing distances between trees. The geodesic tree distance-introduced by Billera, Holmes, and Vogtmann-combines both the tree topology and edge lengths into a single metric. Despite the conceptual simplicity of the geodesic tree distance, algorithms to compute it don't scale well to large, real-world phylogenetic trees composed of hundred or even thousand leaves. In this paper, we propose the geodesic distance as an effective tool for exploring the likelihood profile in the space of phylogenetic trees, and we give a cubic time algorithm, GeoHeuristic, in order to compute an approximation of the distance. We compare it with the GTP algorithm, which calculates the exact distance, and the cone path length, which is another approximation, showing that GeoHeuristic achieves a quite good trade-off between accuracy (relative error always lower than 0.0001) and efficiency. We also prove the equivalence among GeoHeuristic, cone path, and Robinson-Foulds distances when assuming branch lengths equal to unity and we show empirically that, under this restriction, these distances are almost always equal to the actual geodesic.  相似文献   

14.
We explore model-based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log–Det distance measure. We take as our primary tool group representation theory, and show that it provides a general framework for analyzing Markov processes on trees. From this algebraic perspective, the inherent symmetries of these processes become apparent, and focusing on plethysms, we are able to define Markov invariants and give existence proofs. We give an explicit technique for constructing the invariants, valid for any number of character states and taxa. For phylogenetic trees with three and four leaves, we demonstrate that the corresponding Markov invariants can be fruitfully exploited in applied phylogenetic studies.  相似文献   

15.
Given the importance of phylogenetic trees to understanding common ancestry and evolution, they are a necessary part of the undergraduate biology curriculum. However, a number of common misconceptions, such as reading across branch tips and understanding homoplasy, can pose difficulties in student understanding. Students also may take phylogenetic trees to be fact, instead of hypotheses. Below we outline a case study that we have used in upper-level undergraduate evolution and ichthyology courses that utilizes shark teeth (representing fossils), body characters, and mitochondrial genes. Students construct their own trees using freely available software, and are prompted to compare their trees with a series of questions. Finally, students explore homoplasy, polytomies, and trees as hypotheses during a class discussion period. This case study gives students practice with tree-thinking, as well as demonstrating that tree topology is reliant on which characters and tree-building algorithms are used.  相似文献   

16.
In conservation biology it is a central problem to measure, predict, and preserve biodiversity as species face extinction. In 1992 Faith proposed measuring the diversity of a collection of species in terms of their relationships on a phylogenetic tree, and to use this information to identify collections of species with high diversity. Here we are interested in some variants of the resulting optimization problem that arise when considering species whose evolution is better represented by a network rather than a tree. More specifically, we consider the problem of computing phylogenetic diversity relative to a split system on a collection of species of size n. We show that for general split systems this problem is NP-hard. In addition we provide some efficient algorithms for some special classes of split systems, in particular presenting an optimal O(n) time algorithm for phylogenetic trees and an O(n log n + nk) time algorithm for choosing an optimal subset of size k relative to a circular split system.  相似文献   

17.
In recent years the phylogenetic relationship of mammalian orders has been addressed in a number of molecular studies. These analyses have frequently yielded inconsistent results with respect to some basal ordinal relationships. For example, the relative placement of primates, rodents, and carnivores has differed in various studies. Here, we attempt to resolve this phylogenetic problem by using data from completely sequenced nuclear genomes to base the analyses on the largest possible amount of data. To minimize the risk of reconstruction artifacts, the trees were reconstructed under different criteria-distance, parsimony, and likelihood. For the distance trees, distance metrics that measure independent phenomena (amino acid replacement, synonymous substitution, and gene reordering) were used, as it is highly improbable that all of the trees would be affected the same way by any reconstruction artifact. In contradiction to the currently favored classification, our results based on full-genome analysis of the phylogenetic relationship between human, dog, and mouse yielded overwhelming support for a primate-carnivore clade with the exclusion of rodents.  相似文献   

18.
Clades that have undergone episodes of rapid cladogenesis are challenging from a phylogenetic point of view. They are generally characterised by short or missing internal branches in phylogenetic trees and by conflicting topologies among individual gene trees. This may be the case of the subfamily Trematominae, a group of marine teleosts of coastal Antarctic waters, which is considered to have passed through a period of rapid diversification. Despite much phylogenetic attention, the relationships among Trematominae species remain unclear. In contrast to previous studies that were mostly based on concatenated datasets of mitochondrial and/or single nuclear loci, we applied various single-locus and multilocus phylogenetic approaches to sequences from 11 loci (eight nuclear) and we also used several methods to assess the hypothesis of a radiation event in Trematominae evolution. Diversification rate analyses support the hypothesis of a period of rapid diversification during Trematominae history and only a few nodes in the hypothetical species tree were consistently resolved with various phylogenetic methods. We detected significant discrepancies among trees from individual genes of these species, most probably resulting from incomplete lineage sorting, suggesting that concatenation of loci is not the most appropriate way to investigate Trematominae species interrelationships. These data also provide information about the possible effects of historic climate changes on the diversification rate of this group of fish.  相似文献   

19.
One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.  相似文献   

20.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号