首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.  相似文献   

2.
Human leukemic T lymphocytes (Jurkat cells) were induced to undergo apoptosis by brief irradiation with ultraviolet C light (254 nm). This was accompanied by accumulation of lipid peroxidation products in the form of conjugated dienes, a decrease of total glutathione content, and a shift of its redox state towards the oxidized form. Preincubation of the cells with 1 mM pantothenate resulted in a significant elevation of total glutathione content of the cells, reaching its maximum level, 160% of the control, after 3 h. Similar increase was observed after preincubation with 5 mM N-acetylcysteine, a known precursor of glutathione. Both pantothenic acid and N-acetylcysteine alleviated the ultraviolet-induced decrease of glutathione content, diminished lipid peroxidation, and partly protected the cells against apoptosis produced by ultraviolet irradiation.  相似文献   

3.
We have previously shown that mouse embryonic stem (ES) cells transplanted following myocardial infarction (MI) differentiate into the major cell types in the heart and improve cardiac function. However, the extent of regeneration was relatively meager compared with the observed functional improvement. Therefore, we hypothesize that mechanisms in addition to regeneration contribute to the functional improvement from ES cell therapy. In this study, we examined the effect of mouse ES cells transplanted post-MI on cardiac apoptosis, fibrosis, and hypertrophy. MI was produced by left coronary artery ligation in C57BL/6 mice. Two different mouse ES cell lines, expressing enhanced green fluorescent protein and beta-galactosidase, respectively, were tested. Post-MI intramyocardial injection of 3 x 10(4) ES cells was compared with injection of medium alone. Terminal deoxynucleotidyl nick end labeling (TUNEL), immunofluorescence, and histology were used to examine the effect of transplanted ES cells on apoptosis, fibrosis, and hypertrophy. Two weeks post-MI, ES cell-transplanted hearts exhibited a significant decrease in TUNEL-stained nuclei (mean +/- SE; MI+medium = 12 +/- 1.5%; MI+ES cells = 6.6 +/- 1%, P < 0.05). TUNEL-positive nuclei were confirmed to be apoptotic by colabeling with a caspase-3 antibody. Cardiac fibrosis was 57% less in the MI+ES cell group compared with the MI + medium group (P < 0.05) as shown with Masson's trichrome staining. Picrosirius red staining confirmed a decreased amount of collagen present in the MI+ES cell group. Cardiomyocyte hypertrophy was significantly decreased following ES cell transplantation compared with medium control animals. In conclusion, transplanted mouse ES cells in the infarcted heart inhibit apoptosis, fibrosis, and hypertrophy, thereby reducing adverse remodeling.  相似文献   

4.
5.
Endoplasmic reticulum (ER) dysfunction is thought to play a significant role in several neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, cerebral ischemia, and the prion diseases. ER dysfunction can be mimicked by cellular stress signals such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds, which results in accumulation of misfolded proteins in the ER and leads to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis. In this study, we examined the involvement of double stranded (ds) RNA-activated protein kinase PKR in tunicamycin-induced apoptosis. We used overexpression of the trans-dominant negative, catalytically inactive mutant K296R to inhibit PKR activity in neuroblastoma cells. We demonstrate that inhibition of PKR activation in response to tunicamycin protects neuronal cells from undergoing apoptosis. Furthermore, K296R overexpressing cells show defective PKR activation, delayed eIF2α phosphorylation, dramatically delayed ATF4 expression. In addition, both caspase-3 activation and C/EBP homologous protein (CHOP, also known as GADD153) induction, which are markers of apoptotic cells, are absent from K296R overexpression cells in response to tunicamycin. These results establish that PKR activation plays a major regulatory role in induction of apoptosis in response to ER stress and indicates the potential of PKR as possible target for neuroprotective therapeutics.  相似文献   

6.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.  相似文献   

7.
BackgroundDiabetic cardiomyopathy is characterized by both systolic and diastolic dysfunction due to decreased contractility, as well as reduced compliance of the myocardium. Oxidative stress plays a significant role in diabetes mellitus and its cardiovascular complications. Salidroside, a glucoside of the phenylpropanoid tyrosol, reportedly increases the levels of the antioxidative enzymes, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 (HO-1) to counteract oxidative stress; however, the underlying mechanisms are poorly understood.PurposeHere we investigate the potential cardio-protective effects of salidroside and its mechanism in a diabetic animal model.MethodsMale db/m, db/db, and age-matched wild-type mice were treated with salidroside at low dose (0.025 mg/kg) or high dose (0.05 mg/kg) by gavage every day for 12 weeks. Cardiac function and structure were assessed by echocardiography and histopathological examination. H9C2 cardiomyocytes were exposed in vitro to advanced glycosylation end products (400 μg/ml) and treated with salidroside (0.1, 1, or 10 μM). The expression of signaling-related genes were explored by western blotting and real-time PCR.ResultsSalidroside treatment significantly improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis in vivo. Mechanistically, salidroside markedly up-regulates HO-1 expression by activation of the AKT signaling pathway.ConclusionSalidroside protects against cardiomyocyte apoptosis and ventricular remodeling in diabetic mice. This cardio-protective effect of salidroside is dependent on AKT signaling activation.  相似文献   

8.
Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation.Stem cells in the body are exposed to low oxygen pressure owing to the physiological distribution of vessels.1 This hypoxic niche for stem cells is essential to maintain the metabolic characteristics of stem cells.2 Thus, describing the oxygen nature of this stem cell niche is important for elucidating stem cell regulation. Oxygen signaling is a major determinant of cell fate-controlling cellular processes. Control of oxygen signaling in stem cells has the potential to regulate embryonic development, cell cultivation, cell reprogramming, and transplantation in regenerative medicine.1, 3, 4, 5, 6 There are many reports showing the effects of hypoxia on various kinds of stem cells, and it has been shown that hypoxia has a paradoxical role in stem cell behaviors and cell fate regulation related to stem cell type, ageing, and oxygen concentration.3, 7, 8, 9 Studies of mechanisms by which stem cells function under hypoxia, and how they are regulated, have been undertaken. Several investigators recently reported that hypoxia-mediated stem cell metabolic alteration is associated with stem cell function; as a result, interest in the interaction between hypoxia and stem cell metabolism is growing.10, 11 However, which metabolic factors are important for stem cell fate under hypoxia have not been elucidated.O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is affected by cellular nutrient status and extra-cellular stresses including hypoxia.12, 13, 14 A hypoxia-induced glycolytic switch primarily stimulates hexosamine biosynthetic pathway (HBP) flux, which induces O-GlcNAcylation signaling.15 O-GlcNAcylation is catalyzed by O-linked N-acetyl glucosamine transferase (OGT) to add N-acetyl glucosamine to the serine or threonine residues of proteins.16, 17, 18 O-GlcNAcylation acts as an essential factor for controlling physiological processes including migration, proliferation, and survival in stem cells, and recently it was considered as a potential strategy for use in stem cell therapy.19, 20, 21 In addition, as many human metabolic diseases such as diabetes and cancer are attributed to aberrant O-GlcNAcylation, unraveling HBP-mediated O-GlcNAc signaling is important in the development of practical strategies for metabolic diseases treatment. For example, Liu et al.22 showed that glucosamine-mediated O-GlcNAcylation induced resistance to tissue damage resulting from ischemic injury and provided cardio-protection in an animal model. Furthermore, O-GlcNAcylation interacts with other nutrient metabolic pathways such as lipogenesis, gluconeogenesis, and glycogen synthesis.12, 23, 24 Among these metabolic pathways, lipid metabolism is reported to have a central role in controlling stem cell fate.25, 26 Collectively, these results suggest that O-GlcNAcylation can be a useful tool for use in cellular metabolic regulation, and identification of an O-GlcNAcylation-regulating potential lipid metabolic factor, which is important for stem cell regulation, may suggest potentially useful metabolic approach in stem cell therapy.Embryonic stem cells (ESCs) are distinctive in that they have a self-renewal capacity, exhibit pluripotency to enable differentiation into cellular derivatives of three lineages, and may be used as a representative in vitro model in the study of early embryo development, pluripotent stem cell physiology, and clinical applications.27, 28, 29 Despite the clinical limitation associated with ESCs and the possibility of cancer formation, several studies into the therapeutic effects of ESCs in regenerative medicine have been reported. Indeed, administrations of human or mouse ESCs (mESCs) has induced a paracrine effect and improved damaged cell functions.30, 31, 32 However, despite the benefit of ESCs in regenerative medicine, ESC apoptosis remains an impediment to ESC applications using hypoxia.33, 34, 35 Thus, researchers are investigating ways to minimize ESC apoptosis and control ESC fate under hypoxia. In this study, we used glucosamine to induce O-GlcNAcylation. Therefore, our study investigated the role of O-GlcNAcylation via glucosamine (GlcN) which is recognized as a HBP activator36 in lipid metabolism and in protection of mESC apoptosis under hypoxia.  相似文献   

9.
Amino acid-based core cross-linked star (CCS) polymers (poly(L-lysine)(arm)poly(L-cystine)(core)) with peripheral allyl functionalities were synthesized by sequential ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs) via the arm-first approach, using N-(trimethylsilyl)allylamine as the initiator. Subsequent functionalization with a poly(ethylene glycol) (PEG)-folic acid conjugate via thiol-ene click chemistry afforded poly(PEG-b-L-lysine)(arm)poly(L-cystine)(core) stars with outer PEG coronas decorated with folic acid targeting moieties. Similarly, a control was prepared without folic acid, using just PEG. A fluorophore was used to track both star polymers incubated with breast cancer cells (MDA-MB-231) in vitro. Confocal microscopy and flow cytometry revealed that the stars could be internalized into the cells, and higher cell internalization was observed when folic acid moieties were present. Cytotoxicity studies indicate that both stars are nontoxic to MDA-MB-231 cells at concentrations of up to 50 μg/mL. These results make this amino acid-based star polymer an attractive candidate in targeted drug delivery applications including chemotherapy.  相似文献   

10.
In diabetes, the number of bone mesenchymal stem cells (MSCs) decreases and their differentiation is impaired. However, the exact mechanism is unclear. Patients with diabetes often experience sympathetic nerve injury. Norepinephrine (NE), a major mediator of the sympathetic nervous system, influences rat MSC migration in culture and in vivo. The present study aimed to investigate the effect of NE on MSCs under high glucose conditions; therefore MSCs were treated with high glucose and NE. High glucose-induced MSCs apoptosis, which was reversed by NE. To verify the effect of NE, mice underwent sympathectomy and were used to establish a diabetic model. Diabetic mice with sympathectomy had a higher apoptosis rate and higher levels of reactive oxygen species in their bone marrow-derived cells than diabetic mice without sympathectomy. High glucose inhibited p-AKT production and B-Cell CLL/Lymphoma 2 expression, and promoted BAX and caspase-3 expression. NE reversed these effects of high glucose. An AKT inhibitor enhanced the effects of high glucose. Thus, NE had a protective effect on MSC apoptosis induced by high glucose, possibly via the AKT/BCL-2 pathway.  相似文献   

11.
Steroid hormones have been reported to activate various signal transducers that trigger a variety of cellular responses. Among these hormones, testosterone has been identified as an antioxidant that protects against cellular damage. Therefore, using mouse embryonic stem (ES) cells as a model system, this study evaluated the effects of dihydrotestosterone (DHT), a biologically active testosterone metabolite, on H2O2-induced apoptosis. H2O2 increased the release of lactate dehydrogenase (LDH) and DNA fragmentation but reduced the cell viability in a time-dependent manner (> or =8 h). Moreover, H2O2 decreased the level of DNA synthesis and the levels of the cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4]. These effects of H2O2 were inhibited by a pretreatment with DHT. However, a treatment with flutamide (androgen receptor inhibitor, 10(-3) M) abolished the protective effects of DHT. This result was supported by the presence of the androgen receptor in mouse ES cells. The activity of the antioxidant enzyme, catalase, was increased by the DHT treatment but not by a co-treatment with DHT and flutamide. Using CM-H(2)DCFDA (DCF-DA) for the detection of intracellular H2O2, DHT decreased the intracellular H2O2 levels but flutamide blocked this effect. H2O2 also increased the level of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation, which were inhibited by the DHT pretreatment. Catalase inhibited the effect of H2O2 on MAPKs and NF-kappaB. However, the flutamide treatment abolished the inhibitory effects of DHT on the H2O2-induced increase in the levels of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation. DHT inhibited the H2O2-induced increase in caspase-3 expression and decreased the level of Bcl-2 and the cellular inhibitor of apoptosis protein (cIAP)-2. These effects were abolished by the flutamide treatment. In conclusion, DHT prevents the H2O2-induced apoptotic cell death of mouse ES cells through the activation of catalase and the downregulation of p38 MAPK, JNK/SAPK, and NF-kappaB via the androgen receptor.  相似文献   

12.
Apoptosis of vascular smooth muscle cells (VSMC) significantly contributes to the instability of advanced atherosclerotic plaques. Oxygen radicals are an important cause for VSMC death. However, the precise mechanism of oxidative stress-induced VSMC apoptosis is still poorly understood. Here, we aimed to analyse the role of soluble adenylyl cylclase (sAC). VSMC derived from rat aorta were treated with either H2O2 (300 µmol/L) or DMNQ (30 µmol/L) for 6 h. Oxidative stress-induced apoptosis was prevented either by treatment with 30 µmol/L KH7 (a specific inhibitor of sAC) or by stable sAC-knockdown (shRNA-transfection). A similar effect was found after inhibition of protein kinase A (PKA). Suppression of the sAC/PKA-axis led to a significant increase in phosphorylation of the p38 mitogen-activated protein kinase under oxidative stress accompanied by a p38-dependent phosphorylation/inactivation of the pro-apoptotic Bcl-2-family protein Bad. Pharmacological inhibition of p38 reversed these effects of sAC knockdown on apoptosis and Bad phosphorylation, suggesting p38 as a link between sAC and apoptosis. Analysis of the protein phosphatases 1 and 2A activities revealed an activation of phosphatase 1, but not phosphatase 2A, under oxidative stress in a sAC/PKA-dependent manner and its role in controlling the p38 phosphorylation. Inhibition of protein phosphatase 1, but not 2A, prevented the pro-apoptotic effect of oxidative stress. In conclusion, sAC/PKA-signaling plays a key role in the oxidative stress-induced apoptosis of VSMC. The cellular mechanism consists of the sAC-promoted and protein phosphatase 1-mediated suppression of p38 phosphorylation resulting to activation of the mitochondrial pathway of apoptosis.  相似文献   

13.
In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions. This work was support by the Délégation Générale pour l’Armement (D.G.A./D.S.P. No. 95-151). A. Deniaud received a fellowship from Ligue contre le Cancer. C. Brenner is supported by the Association pour la Recherche sur le Cancer (ARC). The authors are grateful to D.C. Gruenert for providing us with the human bronchial epithelial cell line.  相似文献   

14.
Diabetes mellitus (DM) is a primary risk factor for cardiovascular diseases and heart failure. Activation of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) has an anti-diabetic effect; but, a role in diabetic cardiomyopathy remains unclear. Using neonatal and adult cardiomyocytes, we determined the role of RAR and RXR in hyperglycemia-induced apoptosis and expression of renin-angiotensin system (RAS) components. Decreased nuclear expression of RARα and RXRα, activation of apoptotic signaling and cell apoptosis was observed in high glucose (HG) treated neonatal and adult cardiomyocytes and diabetic hearts in Zucker diabetic fatty (ZDF) rats. HG-induced apoptosis and reactive oxygen species (ROS) generation was prevented by both RAR and RXR agonists. Silencing expression of RARα and RXRα, by small interference RNA, promoted apoptosis under normal conditions and significantly enhanced HG-induced apoptosis, indicating that RARα and RXRα are required in regulating cell apoptotic signaling. Blocking angiotensin type 1 receptor (AT(1) R); but, not AT(2) R, attenuated HG-induced apoptosis and ROS generation. Moreover, HG induced gene expression of angiotensinogen, renin, AT(1) R, and angiotensin II (Ang II) synthesis were inhibited by RARα agonists and promoted by silencing RARα. Activation of RXRα, downregulated the expression of AT(1) R; and RXRα silencing accelerated HG induced expression of angiotensinogen and Ang II synthesis, whereas there was no significant effect on renin gene expression. These results indicate that reduction in the expression of RARα and RXRα has an important role in hyperglycemia mediated apoptosis and expression of RAS components. Activation of RAR/RXR signaling protects cardiomyocytes from hyperglycemia, by reducing oxidative stress and inhibition of the RAS.  相似文献   

15.
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.  相似文献   

16.
17.
Comment on: Lee KH, et al. Proc Natl Acad Sci USA 2010; 107:69-74.  相似文献   

18.
Mucke L  Pitas RE 《Neuron》2004,43(5):596-599
Interactions between environmental and genetic factors may contribute to neurodegenerative disease. In this issue of Neuron, Calon et al. report that a diet low in an essential omega-3 polyunsaturated fatty acid (docosahexaenoic acid) depletes postsynaptic proteins and exacerbates behavioral alterations in a transgenic mouse model of Alzheimer's disease.  相似文献   

19.
Chen T  Du J  Lu G 《Molecular biology reports》2012,39(2):1855-1861
It has been clear that both Oct4 and Nanog play essential roles in maintaining embryonic stem cells (ESCs) undifferentiation. However, the roles of Oct4 and Nanog in ESCs growth and apoptosis have been much less explored. In this study, we systematically examined the effects of Oct4 or Nanog knockdown on mouse ESCs (mESCs) growth and apoptosis as well as potential mechanisms. Our results show that Oct4 or Nanog knockdown induces growth arrest and apoptosis in mESCs, indicating that the two genes also play important roles in mESCs survival and growth. Moreover, upregulation in Trp53 and its downstream genes expression was detected in Oct4 or Nanog knockdown mESCs, suggesting a possible role of Trp53 in Oct4 or Nanog knockdown induced mESCs growth arrest and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号