首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
DNA repair is regulated on many levels by ubiquitination. In order to identify novel connections between DNA repair pathways and ubiquitin signaling, we used mass spectrometry to identify proteins that interact with lysine 6-linked polyubiquitin chains. From this proteomic screen, we identified the DNA repair protein WRNIP1 (Werner helicase-interacting protein 1), along with nucleosome assembly protein 1, as novel ubiquitin-interacting proteins. We found that a small zinc finger domain at the N terminus of WRNIP1 is sufficient and necessary for noncovalent ubiquitin binding. This ubiquitin-binding zinc finger (UBZ) domain binds polyubiquitin but not monoubiquitin and appears to show no specificity for polyubiquitin chain linkage. A homologous zinc finger domain in RAD18 also binds polyubiquitin, suggesting a wider role for the UBZ domain in DNA repair. The WRNIP1 ubiquitin-binding function, along with its previously established ATPase activity, suggests that WRNIP1 plays a role in the metabolism of ubiquitinated proteins. Supporting this model, deletion of MGS1, the yeast homolog of WRNIP1, slows the rate of ubiquitin turnover, rendering yeast resistant to cycloheximide. We also find that WRNIP1 is heavily modified with ubiquitin and SUMO, revealing complex layers in the involvement of ubiquitin pathway proteins in the regulation of DNA repair. The novel ubiquitin-binding ability of WRNIP1 sheds light on the role of UBZ domain-containing proteins in postreplication DNA repair.  相似文献   

2.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The second zinc finger fragment of Sp1 (Sp1-ZF2), its mutant (Sp1-ZF2/HT. E20 → H, R23 → T), and two mimic analogues (ZF20 and ZF15) were synthesized by stepwise solid phase technique. The CD spectra and UV-visible spectrum with CoC12 indicated that the formation of zinc finger structure was affected not only by the hydrophobic amino acids but also by the change of the distance between Cys and His. Gel-retardat ion electrophoresis assays indicated that the Glu and Arg residues are very important for recognition. A single zinc finger like Sp1-ZF2 is able to bind DNA sequence specifically.  相似文献   

4.
Full length murine WT1 and its zinc finger domain were separately inserted into Escherichia coli expression vectors with various fusion tags on either terminus by Gateway technology (Invitrogen) and expression of soluble protein was assessed. Fusion proteins including the four zinc finger domains of WT1 were used to optimize expression and purification conditions and to characterize WT1:DNA interactions in the absence of WT1:WT1 interactions. Zinc finger protein for in vitro characterization was prepared by IMAC purification of WT1 residues 321-443 with a thioredoxin-hexahistidine N-terminal fusion, followed by 3C protease cleavage to liberate the zinc fingers and cation exchange chromatography to isolate the zinc fingers and reduce the level of the truncated forms. Titration of zinc finger domain with a binding site from the PDGFA promoter gave a K(d) of 100±30nM for the -KTS isoform and 130±40nM for the +KTS isoform. The zinc finger domain was also co-crystallized with a double-stranded DNA oligonucleotide, yielding crystals that diffract to 5.5?. Using protocols established for the zinc finger domain, we expressed soluble full-length WT1 with an N-terminal thioredoxin domain and purified the fusion protein by IMAC. In electro-mobility shift assays, purified full-length WT1 bound double-stranded oligonucleotides containing known WT1 binding sites, but not control oligonucleotides. Two molecules of WT1 bind an oligonucleotide presenting the full PDGFA promoter, demonstrating that active full-length WT1 can be produced in E. coli and used to investigate WT1 dimerization in complex with DNA in vitro.  相似文献   

5.
Genome maintenance pathways correct aberrations in DNA that would be deleterious to the organism. A crucial element of many genome maintenance processes is the ability to degrade DNA that either contains errors or obscures useful substrates for recombination and/or repair by means of nucleases. We have examined a putative nuclease that has heretofore been unreported, KIAA1018/FAN1. This protein contains a predicted ubiquitin-binding zinc finger domain (UBZ) near its N-terminus and an endonuclease-like fold near its C-terminus. Here we describe that FAN1 is a nuclear protein and forms DNA-damage-induced foci, which appear to be at stalled replication forks as denoted by RPA colocalization. Localization of FAN1 to sites of damage is dependent upon its UBZ domain. In addition, knockdown of FAN1 by RNA interference leads to increased sensitivity to interstrand crosslinking agents and accumulation of abnormal chromosomes. FAN1 may be an important new player in the maintenance of genome stability.  相似文献   

6.
The second zinc finger fragment of Sp1 (Spl-ZF2), its mutant (Spl-ZF2/HT. E20→H, R23→T), and two mimic analogues (ZF20 and ZF15) were synthesized by stepwise solid phase technique. The CD spectra and UV-visible spectrum with CoCl2 indicated that the formation of zinc finger structure was affected not only by the hy-drophobic amino acids but also by the change of the distance between Cys and His. Gel-retardation electrophoresis as-says indicated that the Grlu and Arg residues are very important for recognition. A single zinc finger like Spl-ZF2 isable to bind DNA sequence specifically.  相似文献   

7.
8.
The structure of a CCHHC zinc-binding domain from neural zinc finger factor-1 (NZF-1) has been determined in solution though the use of NMR methods. This domain is a member of a family of domains that have the Cys-X(4)-Cys-X(4)-His-X(7)-His-X(5)-Cys consensus sequence. The structure determination reveals a novel fold based around a zinc(II) ion coordinated to three Cys residues and the second of the two conserved His residues. The other His residue is stacked between the metal-coordinated His residue and a relatively conserved aromatic residue. Analysis of His to Gln sequence variants reveals that both His residues are required for the formation of a well-defined structure, but neither is required for high-affinity metal binding at a tetrahedral site. The structure suggests that a two-domain protein fragment and a double-stranded DNA binding site may interact with a common two-fold axis relating the two domains and the two half-sites of the DNA-inverted repeat.  相似文献   

9.
Meiotic recombination contributes to augmentation of genetic diversity, exclusion of deleterious alleles and proper segregation of chromatids. PRDM9 has been identified as the gene responsible for specifying the location of recombination hotspots during meiosis and is also the only known vertebrate gene associated with reproductive isolation between species. PRDM9 encodes a protein with a highly variable zinc finger (ZF) domain that varies between as well as within species. In the present study, the ZF domain of PRDM9 on chromosome 1 was characterized for the first time in 15 goat breeds and 25 sheep breeds of India. A remarkable variation in the number and sequence of ZF domains was observed. The number of ZF repeats in the ZF array varied from eight to 12 yielding five homozygous and 10 heterozygous genotypes. The number of different ZF domains was 84 and 52 producing 36 and 26 unique alleles in goats and sheep respectively. The posterior mean of dN/dS or omega values were calculated using the codeml tool of pamlx to identify amino acids that are evolving positively in goats and sheep, as positions ?1, +3 and +6 in the ZF domain have been reported to experience strong positive selection across different lineages. Our study identified sites ?5, ?1, +3, +4 and +6 to be experiencing positive selection. Small ruminant zinc fingers were also found to be evolving under concerted evolution. Our results demonstrate the existence of a vast diversity of PRDM9 in goats and sheep, which is in concert with reports in many metazoans.  相似文献   

10.
Methionine aminopeptidase type 1 (MetAP1) cotranslationally removes N-terminal methionine from nascent polypeptides, when the second residue in the primary structure is small and uncharged. Eukaryotic MetAP1 has an N-terminal zinc finger domain not found in prokaryotic MetAPs. We hypothesized that the zinc finger domain mediates the association of MetAP1 with the ribosomes and have reported genetic evidence that it is important for the normal function of MetAP1 in vivo. In this study, the intracellular role of the zinc finger domain in yeast MetAP1 function was examined. Wild-type MetAP1 expressed in a yeast map1 null strain removed 100% of N-terminal methionine from a reporter protein, while zinc finger mutants removed only 31-35%. Ribosome profiles of map1 null expressing wild-type MetAP1 or one of three zinc finger mutants were compared. Wild-type MetAP1 was found to be an 80S translational complex-associated protein that primarily associates with the 60S subunit. Deletion of the zinc finger domain did not significantly alter the ribosome profile distribution of MetAP1. In contrast, single point mutations in the first or second zinc finger motif disrupted association of MetAP1 with the 60S subunit and the 80S translational complex. Together, these results indicate that the zinc finger domain is essential for the normal processing function of MetAP1 in vivo and suggest that it may be important for the proper functional alignment of MetAP1 on the ribosomes.  相似文献   

11.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

12.
13.
14.
15.
The recently identified RNF125 [RING (really interesting new gene) finger protein 125], or TRAC-1 (T-cell RING protein in activation 1), is unique among ubiquitin ligases in being a positive regulator of T-cell activation. In addition, TRAC-1 has been shown to down-modulate HIV replication and to inhibit pathogen-induced cytokine production. However, apart from the presence of an N-terminal C3HC4 (Cys(3)-His-Cys(4)) RING domain, the TRAC-1 protein remains uncharacterized. In the present paper, we report novel interactions and modifications for TRAC-1, and elucidate its domain organization. Specifically, we determine that TRAC-1 associates with membranes and is excluded from the nucleus through myristoylation. Our data are further consistent with a crucial role for the C-terminus in TRAC-1 function. In this region, novel domains were recognized through the identification of three closely related proteins: RNF114, RNF138 and RNF166. TRAC-1 and its relatives were found to contain, apart from the RING domain, a C2HC (Cys(2)-His-Cys)- and two C2H2 (Cys(2)-His(2))-type zinc fingers, as well as a UIM (ubiquitin-interacting motif). The UIM of TRAC-1 binds Lys(48)-linked polyubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. As a consequence of auto-ubiquitination, the half-life of TRAC-1 is shorter than 30 min. The identification of these novel modifications, interactions, domains and relatives significantly widens the contexts for investigating TRAC-1 activity and regulation.  相似文献   

16.
17.
18.
19.
20.
TRAF6, a crucial adaptor molecule in innate and adaptive immunity, contains three distinct functional domains. The C-terminal TRAF domain facilitates oligomerization and sequence-specific interaction with receptors or other adaptor proteins. In conjunction with the dimeric E2 enzyme Ubc13-Uev1A, the N-terminal RING domain of TRAF6 functions as an E3 ubiquitin (Ub) ligase that facilitates its own site-specific ubiquitination through the generation of a Lys-63-linked poly-Ub chain. This modification does not cause its proteasomal degradation but rather serves as a scaffold to activate both the IKK and stress kinase pathways. Connecting the N-and C-terminal regions, the four internal zinc finger (ZF) motifs have yet to be functionally defined. In this study, we examined the role of the ZF domains in interleukin-1, lipopolysaccharide, and RANKL signaling by reconstitution of TRAF6-deficient cells with point mutations or deletions of these ZF motifs. Although ZF domains 2-4 are dispensable for activating IKK, p38, and JNK by interleukin-1 and lipopolysaccharide, the first ZF domain together with an intact RING domain of TRAF6 is essential for activating these pathways. Furthermore, TRAF6 autoubiquitination and its interaction with Ubc13 are dependent on ZF1 and an intact RING domain. Additionally, expression of TRAF6 lacking ZF2-4 in TRAF6-deficient monocytes rescues RANKL-mediated osteoclast differentiation and LPS-stimulated interleukin-6 production. These data provide evidence for the critical role of the Ub ligase activity of TRAF6, which is coordinated via the RING domain and ZF1 to supply the necessary elements in signaling by cytokines dependent upon TRAF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号