首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial neomycin-kanamycin phosphotransferase, type II enzyme is encoded by the neo gene and confers resistance to aminoglycoside drugs such as neomycin and kanamycin-bacterial selection and G418-eukaryotic cell selection. Although widely used in gene targeting in mouse embryonic stem cells, the neo coding sequence contains numerous cryptic splice sites and has a high CpG content. At least the former can cause unwanted effects in cis at the targeted locus. We describe a synthetic sequence, sneo, which encodes the same protein as that encoded by neo. This synthetic sequence has no predicted splice sites in either strand, low CpG content, and increased mammalian codon usage. In mouse embryonic stem cells sneo expressability is similar to neo. The use of sneo in gene targeting experiments should substantially reduce the probability of unwanted effects in cis due to splicing, and perhaps CpG methylation, within the coding sequence of the selectable marker.  相似文献   

2.
We describe a two-step strategy to alter any mouse locus repeatedly and efficiently by direct positive selection. Using conventional targeting for the first step, a functional neo gene and a nonfunctional HPRT minigene (the "socket") are introduced into the genome of HPRT- embryonic stem (ES) cells close to the chosen locus, in this case the beta-globin locus. For the second step, a targeting construct (the "plug") that recombines homologously with the integrated socket and supplies the remaining portion of the HPRT minigene is used; this homologous recombination generates a functional HPRT gene and makes the ES cells hypoxanthine-aminopterin-thymidine resistant. At the same time, the plug provides DNA sequences that recombine homologously with sequences in the target locus and modifies them in the desired manner; the plug is designed so that correctly targeted cells also lose the neo gene and become G418 sensitive. We have used two different plugs to make alterations in the mouse beta-globin locus starting with the same socket-containing ES cell line. One plug deleted 20 kb of DNA containing the two adult beta-globin genes. The other replaced the same region with the human beta-globin gene containing the mutation responsible for sickle cell anemia.  相似文献   

3.
We have introduced a 4-bp insertion into the hypoxanthine phosphoribosyltransferase (HPRT) gene of a mouse embryonic stem (ES) cell line by using an "in-out" targeting procedure. During the in step, a homologous integration reaction, we targeted a correcting plasmid to a partially deleted hprt- locus by using an integrating vector that carried a 4-bp insertion in the region of DNA homologous to the target locus. HPRT+ recombinants were isolated by direct selection in hypoxanthine-aminopterin-thymidine (HAT) medium. The HATr cell lines were then grown in medium containing 6-thioguanine (6-TG) to select for hprt- revertants resulting from the excision of the integrated vector sequences. The revertants were examined by Southern blot hybridization to determine the accuracy of this out reaction and the frequency of retaining the 4-bp modification in the genome. Of the 6-TGr colonies examined, 88% had accurately excised the integrated vector sequences; 19 of 20 accurate revertants retained the 4-bp insertion in the resulting hprt- gene. We suggest a scheme for making the in-out targeting procedure generally useful to modify the mammalian genome.  相似文献   

4.
Cotransformation and gene targeting in mouse embryonic stem cells.   总被引:17,自引:3,他引:14       下载免费PDF全文
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.  相似文献   

5.
Defective ecotropic and amphotropic retroviral vectors containing the cDNA for human hypoxanthine phosphoribosyltransferase (HPRT) were developed for efficient gene transfer and high-level cellular expression of HPRT. Helper cell clones which produced a high viral titer were generated by a simplified method which minimizes cell culture. We used the pZIP-NeoSV(X) vector containing a human hprt cDNA. Viral titers (1 X 10(3) to 5 X 10(4)/ml) of defective SVX HPRT B, a vector containing both the hprt and neo genes, were increased 3- to 10-fold by cocultivation of the ecotropic psi 2 and amphotropic PA-12 helper cells. Higher viral titers (8 X 10(5) to 7.5 X 10(6] were obtained when nonproducer NIH 3T3 cells or psi 2 cells carrying a single copy of SVX HPRT B were either transfected or infected by Moloney leukemia virus. The SVX HPRT B defective virus partially corrected the HPRT deficiency (4 to 56% of normal) of cultured rodent and human Lesch-Nyhan cells. However, instability of HPRT expression was detected in several infected clones. In these unstable variants, both retention and loss of the SVX HPRT B sequences were observed. In the former category, cells which became HPRT- (6-thioguanine resistant [6TGr]) also became G418s, indicative of a cis-acting down regulation of expression. Both hypoxanthine-aminopterin-thymidine resistance (HATr) and G418r could be regained by counterselection in hypoxanthine-aminopterin-thymidine. In vitro mouse bone marrow experiments indicated low-level expression of the neo gene in in vitro CFU assays. Individual CFU were isolated and pooled, and the human hprt gene was shown to be expressed. These studies demonstrated the applicability of vectors like SVX HPRT B for high-titer production of defective retroviruses required for hematopoietic gene transfer and expression.  相似文献   

6.
A high-copy-number plasmid, pLink, was constructed to allow the direct selection in Escherichia coli of a neo fusion gene capable of conferring Geneticin (G418) resistance on mouse L cells. pLink was derived from pdMmtneo by insertion of a KpnI linker within the 5'-coding region of the neo gene. This created a minus-one frameshift mutation resulting in a translational termination within the N-terminal region of the protein. The Neo activity was restored by insertion into the modified neo gene of a piece of coding sequence derived from human HPRT cDNA. The resulting plasmid, pAH, was microinjected into mouse A9 cells and shown to confer resistance to G418.  相似文献   

7.
We sought an efficient means to introduce specific human chromosomes into stable interspecific hybrid cells for applications in gene mapping and studies of gene regulation. A defective amphotropic retrovirus was used to insert the gene conferring G418 resistance (neo), a dominant selectable marker, into the chromosomes of diploid human fibroblasts, and the marked chromosomes were transferred to mouse recipient cells by microcell fusion. We recovered five microcell hybrid clones containing one or two intact human chromosomes which were identified by karyotype and marker analysis. Integration of the neo gene into a specific human chromosome in four hybrid clones was confirmed by segregation analysis or by in situ hybridization. We recovered four different human chromosomes into which the G418 resistance gene had integrated: human chromosomes 11, 14, 20, and 21. The high efficiency of retroviral vector transformation makes it possible to insert selectable markers into any mammalian chromosomes of interest.  相似文献   

8.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.  相似文献   

9.
The molecular mechanisms responsible for random integration and gene targeting by recombinant adeno-associated virus (AAV) vectors are largely unknown, and whether vectors derived from autonomous parvoviruses transduce cells by similar pathways has not been investigated. In this report, we constructed vectors based on the autonomous parvovirus minute virus of mice (MVM) that were designed to introduce a neomycin resistance expression cassette (neo) into the X-linked human hypoxanthine phosphoribosyl transferase (HPRT) locus. High-titer, replication-incompetent MVM vector stocks were generated with a two-plasmid transfection system that preserved the wild-type characteristic of packaging only one DNA strand. Vectors with inserts in the forward or reverse orientations packaged noncoding or coding strands, respectively. In human HT-1080 cells, MVM vector random integration frequencies (neo(+) colonies) were comparable to those obtained with AAV vectors, and no difference was observed for noncoding and coding strands. HPRT gene-targeting frequencies (HPRT mutant colonies) were lower with MVM vectors, and the noncoding strand frequency was threefold greater than that of the coding strand. Random integration and gene-targeting events were confirmed by Southern blot analysis of G418- and 6-thioguanine (6TG)-resistant clones. In separate experiments, correction of an alkaline phosphatase (AP) gene by gene targeting was nine times more effective with a coding strand vector. The data suggest that single-stranded parvoviral vector genomes are substrates for gene targeting and possibly for random integration as well.  相似文献   

10.
Sequential gene targeting was used to introduce point mutations into one alpha 2 isoform Na,K-ATPase homolog in mouse embryonic stem (ES) cells. In the first round of targeted replacement, the gene was tagged with selectable markers by insertion of a Neor/HSV-tk gene cassette, and this event was selected for by gain of neomycin (G418) resistance. In the second targeted replacement event, the tagged genomic sequence was exchanged with a vector consisting of homologous genomic sequences carrying five site-directed nucleotide substitutions. Embryonic stem cell clones modified by exchange with the mutation vector were selected for loss of the HSV-tk gene by resistance to ganciclovir. Candidate clones were further screened and identified by polymerase chain reaction and Southern blot analysis. By this strategy, the endogenous alpha 2 isoform Na,K-ATPase gene was altered to encode two other amino acids so that the enzyme is resistant to inhibition by cardiac glycosides while maintaining its transmembrane ion-pumping function. Since the initial tagging event and the subsequent mutation-exchange event are independent of one another, a tagged cell line can be used to generate a variety of mutant lines by exchange with various mutation vectors at the tagged locus. This method should be useful for testing specific mutations introduced into the genomes of tissue culture cells and animals and for developing animal models encompassing the mutational variability of known genetic disorders.  相似文献   

11.
We have developed a bacteriophage lambda vector (lambda NMT) that permits efficient transduction of mammalian cells with a cDNA clone library constructed with the pcD expression vector (H. Okayama and P. Berg, Mol. Cell. Biol. 3:280-289, 1983). The phage vector contains a bacterial gene (neo) fused to the simian virus 40 early-region promoter and RNA processing signals, providing a dominant-acting selectable marker for mammalian transformation. The phage DNA can accommodate pcD-cDNA recombinants with cDNA of up to about 9 kilobases without impairing the ability of the phage DNA to be packaged in vitro and propagated in vivo. Transfecting cells with the lambda NMT-pcD-cDNA recombinant phage yielded G418-resistant clones at high frequency (approximately 10(-2]. Cells that also acquired a particular cDNA segment could be detected among the G418-resistant transformants by a second selection or by a variety of screening protocols. Reconstitution experiments indicated that the vector could transduce 1 in 10(6) cells for a particular phenotype if the corresponding cDNA was present as 1 functional cDNA clone per 10(5) clones in the cDNA library. This expectation was confirmed by obtaining two hypoxanthine-guanine phosphoribosyltransferase (HPRT)-positive transductants after transfecting 10(7) HPRT-deficient mouse L cells with a simian virus 40-transformed human fibroblast cDNA library incorporated into the lambda NMT phage vector. These transductants contained the human HPRT cDNA sequences and expressed active human HPRT.  相似文献   

12.
Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells   总被引:255,自引:0,他引:255  
K R Thomas  M R Capecchi 《Cell》1987,51(3):503-512
We mutated, by gene targeting, the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene in mouse embryo-derived stem (ES) cells. A specialized construct of the neomycin resistance (neor) gene was introduced into an exon of a cloned fragment of the Hprt gene and used to transfect ES cells. Among the G418r colonies, 1/1000 were also resistant to the base analog 6-thioguanine (6-TG). The G418r, 6-TGr cells were all shown to be Hprt- as the result of homologous recombination with the exogenous, neor-containing, Hprt sequences. We have compared the gene-targeting efficiencies of two classes of neor-Hprt recombinant vectors: those that replace the endogenous sequence with the exogenous sequence and those that insert the exogenous sequence into the endogenous sequence. The targeting efficiencies of both classes of vectors are strongly dependent upon the extent of homology between exogenous and endogenous sequences. The protocol described herein should be useful for targeting mutations into any gene.  相似文献   

13.
Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gene targeting studies. We find that a DSB introduced by I-Scel stimulates gene targeting at a selectable neo locus at least 50-fold. The enhanced level of targeting is achieved by transient expression of the I-Scel endonuclease. In 97% of targeted clones a single base pair polymorphism in the transfected homologous fragment was incorporated into the target locus. Analysis of the targeted locus demonstrated that most of the homologous recombination events were 'two-sided', in contrast to previous studies in 3T3 cells in which 'one-sided' homologous events predominated. Thus ES cells may be more faithful in incorporating homologous fragments into their genome than other cells in culture.  相似文献   

14.
We have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418r cell per 3 x 10(6) infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.  相似文献   

15.
The bacterial neomycin phosphotransferase gene driven by the Moloney mouse leukemia virus long terminal repeat (LTR) or SV40 early region promoter was introduced into the human promonocyte-macrophage cell line, U937, and into the pluripotential human embryonic teratocarcinoma cell line, NT2/D1. Clonally derived cell lines capable of growing in 2-4 mg/ml of the aminoglycoside antibiotic, G418 (Geneticin), were established and transfected with pHIVCat, a plasmid expressing the bacterial chloramphenicol acetyl transferase (CAT) activity under the control of the human immunodeficiency virus (HIV-1) LTR. All of the G418 resistant (neo(r)) U937 cell lines and 10 of 14 neo(r) NT2/D1 cell lines exhibited reduced basal levels of CAT expression or impaired responses to activation of the HIV-1 LTR by phorbol 12-myristate 13-acetate (PMA) when compared to the parental lines. Other differences included inhibition of tat activation of the HIV-1 LTR and increased sensitivity of U937 cells to human tumor necrosis factor alpha. The expression of other eukaryotic promoters including the HTLV-1 LTR, SV40 ori sequences, and the human beta-actin gene promoter was similarly affected. However, differentiation of the neo(r) U937 cells into macrophages was neither delayed nor impaired. Because PMA is an activator of protein kinase C (PKC) and a potent inducer of HIV-1 directed gene expression, the amounts, sensitivity to G418, and cytosol to membrane translocation of this enzyme were determined in the wild type and neo(r) U937 cells. G418 at concentrations too low to affect cell growth (12-150 micrograms/ml) inhibited PMA-induced transactivation responses in wild type cells but did not inhibit PKC-dependent protein phosphorylation in vitro. PKC activities in the wild type and neo(r) cells were similar in absolute amounts and in the cytosol-membrane distribution of the enzyme. In contrast with wild type cells, however, all of the cytosolic Ca(2+)-phospholipid-dependent form of PKC disappeared from the neo(r) cells within 30 min after PMA induction. The results suggested that, depending upon the cell type, gene cotransfer using aminoglycoside resistance as a selectable marker may seriously perturb important cellular control mechanisms such as the PKC pathway leading to activation of gene expression.  相似文献   

16.
郑敬民  李坚  傅继梁   《生物工程学报》2001,17(5):566-569
利用小鼠HPRT基因组DNA片段和人工合成的含有FLP重组酶识别位点变异体FRT和F3RT序列的寡核苷酸 ,构建了针对小鼠HPRT基因位点的置换型打靶载体pSP HPRT Fneo F3。经过限制酶酶切及部分测序鉴定其结构正确后 ,将线性化了的打靶载体以电穿孔法导入ES细胞内 ,经G418和 6 -TG双药筛选和分子鉴定 ,得到了 2个在HPRT位点整合有FLP重组酶“交换盒”F Neo F3结构的双交换重组ES细胞克隆 ,为建立基于FLP重组酶介导的盒式交换的高效、定点转基因体系创造了条件.  相似文献   

17.
为了构建适合大多数基因座位点打靶的通用型基因打靶载体及打靶成功后去除正选择标记基因,以克隆载体pGEM-3Z为骨架,插入了一个正选择标记基因新霉素磷酸转移酶基因(neo).两个相同的负选择标记基因单纯疱疹病毒胸苷激酶基因HSV-tk1和HSV-tk2,并在neo的两侧各添加了一个方向相同的LoxP(10cus of crossing-over(X)in P1)序列及两个不同的多克隆位点序列,从而构建了载体pA2T.插入的两个不同的多克隆位点序列中,neo和HSV-tk1之间的多克隆位点序列有8个稀少的酶切位点、neo和HSV-tk2之间的多克隆位点序列有5个稀少的酶切位点,neo、HSV-tk1和HSV-tk2有各自独立的转录单元.脂质体法转染山羊成纤维细胞,用遗传霉素(G418)和丙氧鸟苷(GAC)进行正负筛选,验证了正负选择标记基因的生物活性,证明通用型基因打靶载体pA2T构建成功.栽体pA2T转化组成性表达Cre重组醇(Cyclization recombination protein)的大肠杆菌BM25.8,检测到LoxP序列的生物活性,结果表明pA2T中的正选基因可以被Cre重组酶去除.因此,本研究所构建的通用型基因打靶载体pA2T,根据不同的基因座设计同源臂后,插入到MCS中可直接用于不同基因座位点的打靶,并能够在打靶成功后用Cre重组酶去除基因组中插入的neo基因,为用基因打靶的方法制作转基因动物提供了便利.  相似文献   

18.
The neomycin-resistant gene (neo(r)) is probably the most commonly used selectable marker gene in gene targeting and gene transfection research. In this study, the neo(r) gene construct was introduced into in vitro cultured goat foetal fibroblast cells (IV-5), and the cells were selected with 900 microg/ml G418. The G418-resistant colonies were analysed by neo-specific PCR, karyotyping and anti-intermediate filament proteins antibody (anti-vimentin) staining. Cell cycle analysis of the neo(r) positive foetal fibroblast cell colony (IV-5.1) cultured in a variety of cell cycle-arresting medium indicated that 74.2% of cells cultured in serum-deprived medium for 3 days and 71.7% of cells grown to confluence were at G0/G1 stage of cell cycle, respectively, in comparison to 61.6% of cells in normal culture (cycling) medium. Nocodazole treatment for 17 hr in vitro culture could increase the number of cells at G2/M stage of cell cycle from 20.3% (in cycling medium) to 39.7%. In total, one early pregnancy was observed by B ultra-sound scanning in a surrogate transferred with cloned embryos from IV-5.1 cells at M stage (cells were cultured in nocodazole medium). Seven cloned goats, including two that miscarried at a late stage, were derived from the IV-5.1 cell clone cultured in starved medium (G0). Indeed, one surrogate receiving three blastocysts reconstituted from the starved donor cells, gave birth to three live cloned goats, all of which are healthy and doing well. PCR, Southern blot and G418 resistance in vitro of fibroblast cells from cloned goats confirmed that all cloned goats are positive for neo(r) transgene. This study demonstrates that a foreign gene, such as the neo-resistant gene, can be introduced into goat foetal fibroblast cells, and that the resulting transgenic cells are capable of being cloned to produce 100% transgenic animals.  相似文献   

19.
We describe the ability of novel episomally maintained vectors to efficiently promote gene expression in embryonic stem (ES) cells as well as in established mouse cell lines. Extrachromosomal maintenance of our vectors is based on the presence of polyoma virus DNA sequences, including the origin of replication harboring a mutant enhancer (PyF101), and a modified version of the polyoma early region (LT20) encoding the large T antigen only. Reporter gene expression from such extrachromosomally replicating vectors was approximately 10-fold higher than expression from replication-incompetent control plasmids. After transfection of different ES cell lines, the polyoma virus-derived plasmid variant pMGD20neo (7.2 kb) was maintained episomally in 16% of the G418-resistant clones. No chromosomal integration of pMGD20neo vector DNA was detected in ES cells that contained episomal vector DNA even after long term passage. The vector's replication ability was not altered after insertion of up to 10 kb hprt gene fragments. Besides undifferentiated ES cells, the polyoma-based vectors were also maintained extrachromosomally in differentiating ES cells and embryoid bodies as well as in established mouse cell lines.  相似文献   

20.
The effects of Geneticin (G418) selection on the growth and survival of cultured mammalian cells expressing the neomycin-resistance gene (neo) were studied by the analysis of cell clones from two retroviral neo vector-infected populations. We found a correlation between the neo expression level and growth rates in medium containing varying G418 concentrations. This relationship permits the use of differential selection schemes for the isolation of rare cells with increased expression. Comparison, by clone sampling, of vector-positive populations before and after selection with a G418 concentration in the range usually used for selection, showed different expression level and vector copy number distributions for the population infected with the vector of lower LTR activity, but not for the other. Such biasing effects of G418 selection may be important when selected cells are used for quantitative studies of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号