首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two most prevalent types of treatment wetland, especially during the early history of the technology, are free water surface (FWS) and horizontal subsurface flow (HSSF) wetlands. The several factors involved in the choice of which alternative to choose include size, cost, operability, together with health and nuisance issues and ancillary benefits. Contaminant removal performance differs by constituent, with the advantage to FWS for moderate to high biochemical oxygen demand (BOD), TSS, ammonia, total nitrogen and phosphorus. HSSF are more effective for tertiary BOD levels, nitrate and pathogens. Superpositions of the loading data show that the respective data clouds overlap virtually entirely for HSSF and FWS wetlands. There is little or no performance difference when they are compared on this areal basis. In general, there is little or no advantage of HSSF for space saving. In cold climates, HSSF systems are less cold sensitive, and easier to insulate for winter operation. The use of winter storage enables FWS to be used in freezing conditions, but the cost makes that option comparable to the more expensive HSSF. In general, economics do not favor the choice of HSSF wetlands. Factors other than reduction performance are also important in the selection process. Other principal reasons for selecting the HSSF option over the FWS option are prevention of human health contact problems, mosquito control and minimization of wildlife interactions.  相似文献   

2.
The aim of this work was to evaluate the efficiency of horizontal subsurface flow constructed wetlands (HSFCWs) planted with Typha domingensis and Phragmites australis in the final treatment of dairy wastewater. Ten microcosms-scale reactors simulating HSFCWs were arranged outdoors under a semi-transparent plastic roof. Five replicates were planted with T. domingensis and five with P. australis. In both cases, light expanded clay aggregate (LECA) 10/20 was used as a substrate. Real effluent with previous treatment was used. In order to evaluate contaminant removal efficiencies in each reactor, pH, electrical conductivity, suspended solids, ammonium, nitrate, nitrite, total phosphorus, and chemical oxygen demand (COD) were analyzed before and after treatment. HSFCWs planted with T. domingensis and P. australis were efficient for the final treatment of dairy wastewater. Removal efficiencies obtained in microcosms planted with both macrophytes were over 96% for ammonium and nitrite. Nitrate removal efficiency was 39%. COD decreased along the experiment near 75% for both treatments. High removal percentages for suspended solids (78.4–81.1%) were also achieved. However, systems planted with T. domingensis were significantly more efficient for total phosphorus removal (88.5%) than those planted with P. australis (71.6%).  相似文献   

3.
Supplying polluted river water to nature reserves in The Netherlands often leads to eutrophication of the reserve. The eutrophication can be caused directly by the high nutrient input (external eutrophication) or indirectly by altering nutrient availability due to changes in nutrient desorption or mineralization. This paper investigates the potential of a ditch system that is tested for its potential to improve the water quality of polluted river water prior to supplying to the wet meadow reserve De Meije in The Netherlands. Concentrations of the macro-ions chloride, sulphate, calcium and bicarbonate in the polluted river water were much higher than original background values, measured in the reserve. During transport of the river water through the ditch system, no decline was observed in the concentrations of these macro-ions. The phosphorus concentration, however, decreased along the flow path and was significantly negatively correlated with the distance from the inlet point. High phosphorus removal occurred in a stretch of the ditch system where submerged and free floating species such as Fontinalis antipyretica and Lemna trisulca were dominant. The N: P ratio of F. antipyretica was especially low (N : P < 5) at sampling stations where high phosphorus concentrations were measured. The high N: P ratio indicated a luxury consumption of phosphorus. With decreasing phosphorus concentrations, the N: P ratio of F. antipyretica increased to a maximum of N: P = 25. The nutrient budget of the ditch system showed that supply of river water was the main input of phosphorus (12 kg P) whereas the main inputs of nitrogen of the ditch system were atmospheric deposition (66 kg N) and leaching from the wet meadows (44 kg N). For both nutrients, harvesting the aquatic vegetation in September was the main removal mechanism from the ditch system with 92 kg of nitrogen (80% of the annual input N) and 14 kg of phosphorus (95% of the annual P input) removed. It was concluded that the ditch system with aquatic vegetation could successfully remove nutrients from polluted river water. The concentrations of macro-ions, however, are not influenced by the ditch systems and internal eutrophication due to changes in adsorption or mineralization may still occur.  相似文献   

4.
Constructed wetlands have a good potential for wastewater treatment in developing countries due to the simple operation and low implementation costs. Ornamental plants like Canna and Heliconia are used in the wetlands to increase their aesthetic value and these two species were compared in this study. Six pilot scale horizontal subsurface flow constructed wetland units were constructed at the Asian Institute of Technology (AIT) campus in Bangkok, Thailand, of which three were planted with Heliconia psittacorum L.f. × H. Spathocircinata (Aristeguieta) and three with Canna × generalis L. Bailey. The beds were loaded with domestic wastewater in four trials with hydraulic loading rates ranging from 55 to 440 mm d?1 corresponding to nominal detention times between 12 h and 4 days. Both plant species grew well in the systems and especially Canna had high growth rates (3100 ± 470 g DW m?2 yr?1) compared to Heliconia (550 ± 90 g DW m?2 yr?1). TSS mass removal rates were very high with efficiencies >88% even at hydraulic loading rates of 440 mm d?1. COD mass removal rates varied between 42 and 83% depending on the loading rates. The removal rate constants for COD as fitted by the first-order kC* model were estimated to be 0.283 and 0.271 m d?1 for Canna and Heliconia beds, respectively (C* = 28.1 and 26.7 mg l?1). Removals of nitrogen (N) and phosphorus (P) were low compared to the loading rates, but removal of total-N was higher in the beds planted with Canna than in beds with Heliconia because of the higher growth rate of Canna. It is concluded that ornamental species like Canna and Heliconia can be used to enhance the aesthetic appearance and hence the public acceptance of wastewater treatment systems in tropical climates. Canna is the preferred species from a treatment perspective because of its more vigorous growth, but since Heliconia has an economic potential as cut flowers may be preferred in many cases.  相似文献   

5.
In the present study, a full scale horizontal subsurface flow constructed wetland was designed, constructed and operated to treat domestic wastewater of K?z?lcaören village in Samsun city of Turkey. The total surface area of HSFCW was divided into equal parts. The effects of Juncus acutus L. and Cortaderia selloana (Schult.Schult.f.)Asch.&;Graebn. on pollutants removal in HSFCWs were evaluated with the meteorological factors. The average removal efficiencies of J. acutus and C. selloana were determined as 60.3–57.7% for BOD; 24.2–38.9% for TN; 31.4–49.8% for OM; 35.4–43.3% for TP; 18.9–27.1% for orthophosphate; 24.4–28.7% for NH4-N; 29.5–37.2% for TSS; and 35.3–44.3% for TSM. Two-way ANOVA was applied to determine any difference for the removal of all parameters between the plant types and months on the mean values of contaminant removal. A correlation matrix of all parameters was determined. Subsurface flow constructed wetland was found quite efficient for the treatment of domestic wastewater in rural settlements. HSFCW is also more economical to install and maintain than a conventional wastewater treatment system while enhancing ecosystem services.  相似文献   

6.
This study aimed to evaluate the contaminant removal efficiency of shallow horizontal subsurface flow treatment wetlands (SSF TWs) as a function of (1) primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and (2) operation strategy (alternation of saturated/unsaturated phases vs. permanently saturated). An experimental plant was constructed, operated and surveyed for the main water quality parameters over a period of 2.5 years. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturated/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line wetlands had a surface area of 2.80 m2, a water depth of 25 cm and a granular medium D60 = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 28.5 mm/d and about 4.7 g BOD/m2 d, respectively. Effluent average redox potential was lower for the anaerobic line (−45 ± 78 mV) than for the other two lines (3 ± 92.7 and −5 ± 71 mV for control and batch, respectively). Overall, chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and ammonium mass removal efficiencies were slightly greater for the batch line (88%, 96% and 87%, respectively) than for the control line (83%, 94% and 80%) and the anaerobic line (80%, 87% and 73%). During cold seasons, COD and ammonium removal in the batch line was around 30% and 50% higher than in the control line, respectively. The results of this study indicate that the implementation of a HUSB reactor as primary treatment did not enhance the treatment capacity of the system (in comparison with a conventional settler). The efficiency of treatment wetland systems with horizontal subsurface flow can be improved using a batch operation strategy.  相似文献   

7.
地下渗滤系统处理生活污水的技术难点及对策   总被引:2,自引:0,他引:2  
以土地处理系统为代表的污水自然处理技术,遵循循环再生、和谐共存、整体优化、区域分异等原理,不仅对各种污染物有极高的去除效率,并可实现污水的处理与利用相结合。本文介绍了地下渗滤系统的工艺原理、技术特征,并阐述了国内外研究的最新进展,讨论了应用中的主要技术难点和解决途径,包括选配基质、缓解土壤堵塞以及提高系统氮的去除效果和水力负荷的方法等,指出地下渗滤系统应在强化预处理的基础上,采用合理调配土壤组成以提高水力负荷的运行方式。  相似文献   

8.
Microorganisms are mainly responsible for the transformation and mineralization of degradable organic pollutants within constructed wetlands (CWs). There is still a lack of knowledge concerning microbial community composition within CWs. In order to elucidate the diversity of bacteria inhabiting subsurface vertical flow CWs, the molecular fingerprint technique “terminal restriction fragment length polymorphism” (T-RFLP) derived from total community DNA, was applied.A comparison of the bacterial communities from a full-scale outdoor vertical flow CW with planted and unplanted indoor pilot-scale vertical flow CWs, operated under similar conditions, revealed that both systems are colonized by similar populations showing only little variation in their composition over filter depth. A comparison of bulk soil from an unplanted CW with the rhizosphere soil from the outdoor and indoor CWs showed differences in the bacterial composition, demonstrating the influence of the plants on the rhizosphere community. A comparison of the wastewater before and after the CW passage demonstrated that the bacterial diversity was clearly reduced within the planted outdoor system only.  相似文献   

9.
Constructed wetlands are wastewater treatment technologies based in natural systems, and their environmental and hydraulic behaviour is influenced by weather conditions like temperature, solar radiation and precipitation. In this paper, a one-dimensional dynamic model applicable to horizontal flow constructed wetlands is presented. The structure of the hydraulic module considers Darcy's law for estimating head losses along the porous media and the boundary condition of the outlet structure. For the water budgets, precipitation and evapotranspiration are considered. The model was calibrated and validated with data from a constructed wetland operating in the South of Portugal, and a good agreement between simulated and measured data was obtained. The relevance of considering evapotranspiration in order to obtain good flow estimations was demonstrated, showing a significant influence of that variable on daily flow reductions, especially during summer months. Better simulation results were obtained when considering an evapotranspiration pattern that describes variations during the day, instead of a constant daily evapotranspiration rate.  相似文献   

10.
The hydraulic behaviour and effluent pollutant concentrations in a pilot-scale two-stage subsurface flow constructed wetland for treatment of municipal wastewater have been simulated. The experimental pilot plant is located in San Michele di Ganzaria (Eastern Sicily) and consists of four lines of two-stage subsurface flow constructed wetlands for secondary or tertiary treatment of municipal wastewater. The first stage, for each line, consists of a horizontal flow bed, while in the second stage a vertical flow bed operates for two lines and a horizontal flow bed for the other two. Phragmites sp. was used as vegetation in two lines while the other two lines are without plants. The HYDRUS-2D software was applied to describe flow and single-solute transport, while the multi-component reactive transport module CW2D was used to model the transformation and elimination processes of organic matter, nitrogen and phosphorus. Tracer studies and chemical wastewater analyses were carried out to calibrate and validate the transport model. In general, the simulation results obtained show a good match with the measured data for water flow, tracer experiments and pollutant removal processes.  相似文献   

11.
Anaerobic tests with gravel from horizontal subsurface flow constructed wetlands (SSF) used for the treatment of urban wastewater were developed in order to evaluate the anaerobic biodegradability of their effluents. Two types of assays were conducted. The reactors used for the first type were glass vials of 45 mL, that were used for only one measurement, requiring starting experiments with a number of reactors equal to the measurements to be made. For the second type of experiments multiple measurements were done in the same reactors, by using flasks of 2.2L. The COD of the SSF effluents used for the tests ranged from 60 to 130 mg/L. The evolution of CO(2) in the headspace of the reactors was used as indicator of anaerobic biodegradation rates. CO(2) mass emission rates ranged from 0.005 to 0.015 micromol/mL day. CH(4) generation was not detected in the tests in relation with the refractory properties of the effluent organic matter of the studied SSF. In situ measurement of CO(2) and CH(4) emissions from the gravel of the SSF ranged from 0.106 to 0.464 and from 0.039 to 0.107 mmol/m(2)h, respectively. Several CO(2) fluxes measured in the field were quite consistent with the emissions observed in the laboratory. The developed tests can help to understand the performance of SSF and improve their operation.  相似文献   

12.
红树植物人工湿地对生活污水的净化效果   总被引:1,自引:0,他引:1  
研究了潜流型海桑(Sonneratia caseolaris)人工湿地、桐花树(Aegiceras corniculatum)人工湿地和木榄(Bruguiera gymnorrhiza)人工湿地对生活污水的净化效果。一年来,3种红树植物人工湿地对BOD5、CODCr、TP、TN、NH4^+-N和NO2^--N的平均去除率分别达到83%、71%、41%、55%、50%和84%以上。人工湿地各处理周期之间,BOD5和CODCr去除率波动较小,而TP、TN、NH4^+-N和NO2^--N去除率波动较大。3种红树植物人工湿地对各种污染物的净化效果存在一定的差异。海桑人工湿地和桐花树人工湿地对BOD5、CODCr、TP、TN和NH4^+-N去除率明显高于木榄人工湿地,而海桑人工湿地和桐花树人工湿地相比较,除TP外,BOD5、CODCr、TN和NH4^+-N去除率没有显著差异。人工湿地单一处理周期内,去除率随水力停留时间(HRT)的延长而增加。BOD5、CODCr、TN和NH4^+-N在HRT为1d和2d的去除率分别为HRT为3d去除率的54%-65%和73%-84%,NO2^--N在HRT为1d和2d的去除率分别达到了HRT为3d的70%-81%和85%-94%,而TP在HRT为1d和2d的去除率分别只有HRT为3d的39%-50%和65%-74%。另外,红树植物人工湿地与风车草(Cyperus alternifoliu)人工湿地相比,前者的BOD5、CODCr、TP、TN和NH4^+-N去除率明显小于后者(P〈0.05)。总体上看,3种红树植物人工湿地对生活污水的净化效果呈现海桑人工湿地≈桐花树人工湿地〉木榄人工湿地。  相似文献   

13.
The ammonium nitrogen oxidation process (ANOP) is the first and most important step for nitrogen removal in constructed wetlands (CWs). The process was investigated by observing the products generated from the ANOP in on-site aerobic systems with selective inhibition of nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen concentrations. The effects of season, plant type and density on ANOP were also studied to determine the optimal conditions for the ANOP. Nitrite accumulation was found in the aerobic experiments and greater ammonia-oxidizing bacteria than NOB numbers, showing that partial nitrification to nitrite was occurring in the studied CWs. The nitrogen removal rate was positively linearly correlated with the nitrite accumulation rate, and so the more NH3-N removed by ANOP, the greater the resulting nitrogen removal. Season and plant density had a significant effect on the ANOP. However, there were no significant differences between the units planted with common reed and cattail.  相似文献   

14.
红树林重金属污染生态学研究进展   总被引:16,自引:0,他引:16  
程皓  陈桂珠  叶志鸿 《生态学报》2009,29(7):3893-3900
红树林湿地,由于其固有的一些特性,能够大量接受来自潮汐、河水、地表径流所携带的重金属污染物.近30a来,红树林湿地重金属污染问题已引起了国内外学者们的极大关注,并对此进行了大量的研究.分别对重金属在红树林湿地中的分布与迁移、红树植物对重金属的生长响应及耐性机理等方面的研究进展和存在的问题进行了综述;此外,还对红树林湿地重金属净化效应的相关研究进行简要的概述.最后,对今后的研究趋势提出了一些看法.  相似文献   

15.
Patches of organic matter have been found to be important `hotspots' of denitrification in both surface and subsurface soils, but the factors controlling the formation and maintenance of these patches are not well established. We compared the concentration of patches of organic matter and root biomass in the subsurface (saturated zone) beneath poorly drained riparian wetland soils at four sites in Rhode Island, USA - two dominated by red maple (Acer rubrum) and two dominated by white pine (Pinus strobus). Denitrification enzyme activity (DEA) and carbon (C) content of patch material were compared between sites and between patches with different visual characteristics. Root decomposition was measured in an 8-week ex-situ incubation experiment that compared the effects of water content, root species, and soil matrix origin on CO2 evolution. We observed significantly greater concentrations of patches at 55 cm at one red maple site than all other sites. DEA and percent C in patches was generally higher in patches than matrix soil and did not vary between sites or by patch type. White pine roots decomposed at a faster rate than red maple roots under unsaturated conditions. Our results suggest that faster root decomposition could result in lower concentrations of patches of organic material in subsurface soils at sites dominated by white pine. Tree species composition and root decomposition may play a significant role in the formation of patches and the creation and maintenance of groundwater denitrification hotspots in the subsurface of riparian wetlands. Abbreviations: DEA – denitrification enzyme activity; DOC – dissolved organic carbon; PD – poorly drained; RM-1 – red maple-1 site; RM-2 – red maple-2 site; WP-1 – white pine-1 site; WP-2 – white pine-2 site.  相似文献   

16.
Jan Vymazal 《Hydrobiologia》2011,674(1):133-156
The presence of macrophytes is one of the most conspicuous features of wetlands and their presence distinguishes constructed wetlands from unplanted soil filters or lagoons. The macrophytes growing in constructed wetlands have several properties in relation to the treatment process that make them an essential component of the design. However, only several roles of macrophytes apply to constructed wetlands with horizontal subsurface flow (HF CWs). The plants used in HF CWs designed for wastewater treatment should therefore: (1) be tolerant of high organic and nutrient loadings, (2) have rich belowground organs (i.e. roots and rhizomes) in order to provide substrate for attached bacteria and oxygenation (even very limited) of areas adjacent to roots and rhizomes and (3) have high aboveground biomass for winter insulation in cold and temperate regions and for nutrient removal via harvesting. The comparison of treatment efficiency of vegetated HF CWs and unplanted filters is not unanimous but most studies have shown that systems with plants achieve higher treatment efficiency. The vegetation has mostly a positive effect, i.e. supports higher treatment efficiency, for organics and nutrients like nitrogen and phosphorus. By far the most frequently used plant around the globe is Phragmites australis (Common reed). Species of the genera Typha (latifolia, angustifolia, domingensis, orientalis and glauca) and Scirpus (e.g. lacustris, validus, californicus and acutus) spp. are other commonly used species. In many countries, and especially in the tropics and subtropics, local plants including ornamental species are used for HF CWs.  相似文献   

17.
Official guidelines for the on-site treatment of domestic sewage have recently been published by the Danish Ministry of Environment as a consequence of new treatment requirements for single houses and dwellings in rural areas. This paper summarises the guidelines for vertical constructed wetland systems (planted filter beds) that will fulfil demands of 95% removal of BOD and 90% nitrification. The system can be extended with chemical precipitation of phosphorus with aluminium polychloride in the sedimentation tank to meet requirements of 90% phosphorus removal. The necessary surface area of the filter bed is 3.2 m2/person equivalent and the effective filter depth is 1.0 m. The filter medium must be filtersand with a d10 between 0.25 and 1.2 mm, a d60 between 1 and 4 mm, and a uniformity coefficient (U = d60/d10) less than 3.5. The sewage is, after sedimentation, pulse-loaded onto the surface of the bed using pumping and a network of distribution pipes. The drainage layer in the bottom of the bed is passively aerated through vertical pipes extending into the atmosphere in order to improve oxygen transfer to the bed medium. Half of the nitrified effluent from the filter is recirculated to the first chamber of the sedimentation tank or to the pumping well in order to enhance denitrification and to stabilise the treatment performance of the system. A phosphorus removal system is installed in the sedimentation tank using a small dosing pump. The mixing of chemicals is obtained by a simple airlift pump, which also circulates water in the sedimentation tank. The vertical flow constructed wetland system is an attractive alternative to the common practice of soil infiltration and provides efficient treatment of sewage for discharge into the aquatic environment.  相似文献   

18.
19.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

20.
The performance of a pilot-scale horizontal subsurface flow (HSF) constructed wetland is investigated with emphasis on the effects of wastewater step-feeding. One pilot-scale unit, of dimensions 3 m in length and 0.75 m in width, operated continuously from January 2004 until February 2007. The unit contained cobbles obtained from a river bed and was planted with common reed (Phragmites australis). Synthetic wastewater was introduced to the unit. During the first two years of operation (period A) one inflow point was used at the upstream end of the unit. During the third year of operation (period B), wastewater step-feeding was adopted. Wastewater was introduced to the unit through three inlet points: one at the upstream end of the unit length and the other two at 1/3 and 2/3 of the unit length. Two wastewater step-feeding schemes were examined during the second working period: 33:33:33 and 60:25:15. Three HRTs (6, 8 and 14 days) were applied; wastewater temperatures varied from 6.0 to 25.0 °C. On the whole, the adoption of step-feeding in a HSF CW may be positive if an appropriate scheme is selected. Indeed, the removal of organic matter (BOD5 and COD), nitrogen (TKN and ammonia) and phosphorus (Total Phosphorus and ortho-phosphate) was improved under the step-feeding Scheme 60:25:15, while the other scheme (33:33:33) affected negatively the wetland performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号