首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training.  相似文献   

2.
The objectives of this study were to 1) identify the independent effects of exercise (aerobic or resistance training) and weight loss on whole body insulin sensitivity and 2) determine if aerobic or resistance training would be more successful for maintaining improved whole body insulin sensitivity 1 yr following weight loss. Subjects were 97 healthy, premenopausal women, body mass index (BMI) 27-30 kg/m(2). Following randomized assignment to one of three groups, diet only, diet + aerobic, or diet + resistance training until a BMI <25 kg/m(2) was achieved, body composition, fat distribution, and whole body insulin sensitivity were determined at baseline, in the weight reduced state, and at 1-yr follow up. The whole body insulin sensitivity index (S(I)) was determined using a frequently sampled intravenous glucose tolerance test. Results of repeated-measures ANOVA indicated a significant improvement in S(I) following weight loss. However, there were no group or group×time interactions. At 1-yr follow up, there were no significant time or group interactions for S(I;) however, there was a significant group×time interaction for S(I). Post hoc analysis revealed that women in the aerobic training group showed a significant increased S(I) from weight reduced to 1-yr follow up (P < 0.05), which was independent of intra-abdominal adipose tissue and %fat. No significant differences in S(I) from weight reduced to 1-yr follow up were observed for diet only or diet + resistance groups. Additionally, multiple linear regression analysis revealed that change in whole body insulin sensitivity from baseline to 1-yr follow up was independently associated with the change in Vo(2max) from baseline to 1-yr follow up (P < 0.05). These results suggest that long-term aerobic exercise training may conserve improvements in S(I) following weight loss and that maintaining cardiovascular fitness following weight loss may be important for maintaining improvements in S(I).  相似文献   

3.
De Crée, Carl, Peter Ball, BärbelSeidlitz, Gerrit Van Kranenburg, Peter Geurten, and Hans A. Keizer.Effects of a training program on resting plasma2-hydroxycatecholestrogen levels in eumenorrheic women.J. Appl. Physiol. 83(5):1551-1556, 1997.Catecholestrogens (CE) represent a majormetabolic pathway in estrogen metabolism. Previous information on CEand training is limited to two cross-sectional studies that did notinvolve standardized training. Our purpose, by means of a prospective design, was to evaluate the effects of a brief, exhaustive training program on resting plasma concentrations of 2-hydroxy CE. The experimental design spanned two menstrual cycles: a control cycle and atraining cycle. The subjects were nine previously untrained, eumenorrheic women [body fat: 24.8 ± 1.0 (SE) %]. Datawere collected during the follicular (FPh) and the luteal phases (LPh).Posttraining FPh and LPh tests were held the day after the last day ofa 5-day period of training on a cycle ergometer. Total2-hydroxyestrogens (2-OHE) averaged 200 ± 29 pg/ml during the FPhand 420 ± 54 pg/ml during the LPh(P < 0.05). Levels of total2-methoxyestrogens (2-MeOE) were 237 ± 32 pg/ml during the FPh and339 ± 26 pg/ml during the LPh (P < 0.05). After training, although the plasma levels of 2-OHEsignificantly decreased (21%;P < 0.05) during the LPh, the actualCE formation (as estimated from the 2-OHE-to-total estrogens ratio)increased (+29%; P < 0.05). CE activity, as expressed by the 2-MeOE-to-2-OHE ratio, showedsignificantly higher values in both phases (FPh, +14%; LPh, +13%;P < 0.05). At the same time, restinglevels of norepinephrine (NE) were increased by 42%(P < 0.05). CE strongly inhibitbiological decomposition of NE by catechol-O-methyltransferase (COMT).Results of the present study suggest that, in response to training, CEare increasingly competing with the enzyme COMT, thus preventingpremature NE deactivation.

  相似文献   

4.
Our objective was to investigate the effects of iron depletion on adaptation to aerobic exercise, assessed by time to complete a 15-km cycle ergometer test. Forty-two iron-depleted (serum ferritin <16 microg/l), nonanemic (Hb >12 g/dl) women (18-33 yr old) received 100 mg of ferrous sulfate (S) or placebo (P) per day for 6 wk in a randomized, double-blind trial. Subjects trained for 30 min/day, 5 days/wk at 75-85% of maximum heart rate for the final 4 wk of the study. There were no group differences in baseline iron status or in 15-km time. Iron supplementation increased serum ferritin and decreased transferrin receptors in the S compared with the P group. The S and P groups decreased 15-km time and respiratory exchange ratio and increased work rate during the 15-km time trial after training. The decrease in 15-km time was greater in the S than in the P group (P = 0.04) and could be partially attributed to increases in serum ferritin and Hb. These results indicate that iron deficiency without anemia impairs favorable adaptation to aerobic exercise.  相似文献   

5.
Previous studies have demonstrated that frail octogenarians have an attenuated capacity for cardiovascular adaptations to endurance exercise training. In the present study, we determined the magnitude of cardiovascular and metabolic adaptations to high-intensity endurance exercise training in healthy, nonfrail elderly subjects. Ten subjects [8 men, 2 women, 80.3 yr (SD2.5)] completed 10-12 mo (108 exercise sessions) of a supervised endurance exercise training program consisting of 2.5 sessions/wk (SD 0.2), 58 min/session (SD 6), at an intensity of 83% (SD 5) of peak heart rate. Primary outcomes were maximal attainable aerobic power [peak aerobic capacity (Vo(2peak))]; serum lipids, oral glucose tolerance, and insulin action during a hyperglycemic clamp; body composition by dual-energy X-ray absorptiometry, and energy expenditure using doubly labeled water and indirect calorimetry. The training program resulted in an increase in Vo(2peak) of 15% (SD 7) [22.9 (SD 3.3) to 26.2 ml.kg(-1).min(-1) (SD 4.0); P < 0.0001]. Favorable lipid changes included reductions in total cholesterol (-8%; P = 0.002) and LDL cholesterol (-10%; P = 0.003), with no significant change in HDL cholesterol or triglycerides. Insulin action improved, as evidenced by a 29% increase in glucose disposal rate relative to insulin concentration during the hyperglycemic clamp. Fat mass decreased by 1.8 kg (SD 1.4) (P = 0.003); lean mass did not change. Total energy expenditure increased by 400 kcal/day because of an increase in physical activity. No change occurred in resting metabolism. In summary, healthy nonfrail octogenarians can adapt to high-intensity endurance exercise training with improvements in aerobic power, insulin action, and serum lipid and lipoprotein risk factors for coronary heart disease; however, the adaptations in aerobic power and insulin action are attenuated compared with middle-aged individuals.  相似文献   

6.
C. S. Houston 《CMAJ》1977,117(6):648-651
The date of onset of the last menstrual period should be given on radiographic requisitions for all women of reproductive age. Every effort should be made to avoid unnecessary irradiation of any woman who might be pregnant. Radiation damage in the first 2 weeks of pregnancy, however, should be "all or none", resulting in either a miscarriage or a normal child. Diagnostic radiology procedures are not indications for therapeutic abortion. Ultrasound has now replaced ionizing radiation in most examinations of the fetus and placenta. Pelvimetry should be done only when the decision to do a cesarean section hinges on precise knowledge of measurements of the bony pelvis. On the rare occasion when a radiograph of the fetus is necessary the woman should be prone for the examination. All such examinations are best ordered after consultation with a radiologist. Radiography of distant areas with the beam directed away from the woman''s abdomen can be done without concern at any stage of pregnancy.  相似文献   

7.
Several determinants each play a role in the total blockade of the hypothalamic generator (HTG)--the hypophysiotrophic drive to the gonadotrophes--in the 1st postpartum days. These may include extremely high circulating sexual steroids near delivery and possibly following delivery, dopamine and alpha receptor agonists, and opiates. Data on humans and primates indicate that several weeks after delivery limited estradiol secretion and suckling behavior could work together to support the unstable equilibrium represented by an inefficient HTG. Undernutrition could even strengthen this blockade. For example, it suppresses luteinizing hormone (LH) pulsality. In addition, administration of estradiol was more effective in suppressing LH pulsality in undernourished rats than it was in well nourished rats. The adrenal axis may also contribute to the reproductive effect of prolonged reduced food intake as evidenced by high plasma cortisol levels in humans and in laboratory animals. A disturbance of this active equilibrium can occur at any time which returns physiological processes back to menstrual cyclicity--the normal adult equilibrium state. Health practitioners could manage postpartum events better if the scientific and medical community understood the causes and mechanisms of these disruptions and the means by which the neuro-ovarian cascade is activated. Researchers may begin to understand these processes during lactation if they study the pubertal period.  相似文献   

8.
The purpose of this study was to examine the effect of endurance training on oxygen uptake (VO(2)) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3-5 days per week for 20-30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the VO(2 max) and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal VO(2). The training program caused small (3-4%) but significant increases in LT and maximal VO(2) (P<0.05). The VO(2) kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of the VO(2) slow component was significantly reduced from 321+/-32 to 217+/-23 ml/min (P<0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration (r = 0. 39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation (r = 0.46; P<0.05), it was calculated that only 9-14% of the slow component could be attributed to the change in minute ventilation. We conclude that the VO(2) slow component during treadmill running can be attenuated with a short-term program of endurance running training.  相似文献   

9.
We tested the theory that links the capacity to perform prolonged exercise with the size of the muscle tricarboxylic acid (TCA) cycle intermediate (TCAI) pool. We hypothesized that endurance training would attenuate the exercise-induced increase in TCAI concentration ([TCAI]); however, the lower [TCAI] would not compromise cycle endurance capacity. Eight men (22 +/- 1 yr) cycled at approximately 80% of initial peak oxygen uptake before and after 7 wk of training (1 h/day, 5 days/wk). Biopsies (vastus lateralis) were obtained during both trials at rest, after 5 min, and at the point of exhaustion during the pretraining trial (42 +/- 6 min). A biopsy was also obtained at the end of exercise during the posttraining trial (91 +/- 6 min). In addition to improved performance, training increased (P < 0.05) peak oxygen uptake and citrate synthase maximal activity. The sum of four measured TCAI was similar between trials at rest but lower after 5 min of exercise posttraining [2.7 +/- 0.2 vs. 4.3 +/- 0.2 mmol/kg dry wt (P < 0.05)]. There was a clear dissociation between [TCAI] and endurance capacity because the [TCAI] at the point of exhaustion during the pretraining trial was not different between trials (posttraining: 2.9 +/- 0.2 vs. pretraining: 3.5 +/- 0.2 mmol/kg dry wt), and yet cycle endurance time more than doubled in the posttraining trial. Training also attenuated the exercise-induced decrease in glutamate concentration (posttraining: 4.5 +/- 0.7 vs. pretraining: 7.7 +/- 0.6 mmol/kg dry wt) and increase in alanine concentration (posttraining: 3.3 +/- 0.2 vs. pretraining: 5.6 +/- 0.3 mmol/kg dry wt; P < 0.05), which is consistent with reduced carbon flux through alanine aminotransferase. We conclude that, after aerobic training, cycle endurance capacity is not limited by a decrease in muscle [TCAI].  相似文献   

10.
The aim of this study was to assess the effect of strenuous endurance training on day-to-day changes in oxygen uptake (VO2) on-kinetics (time constant) at the onset of exercise. Four healthy men participated in strenuous training for 30 min.day-1, 6 days.week-1 for 3 weeks. The VO2 was measured breath-by-breath every day except Sunday at exercise intensities corresponding to the lactate threshold (LT) and the onset of blood lactate accumulation (OBLA) which were obtained before training. Furthermore, an incremental exercise test was performed to determine LT, OBLA and maximal oxygen uptake (VO2max) before and after the training period and every weekend. The 30-min heavy endurance training was performed on a cycle ergometer 5 days.week-1 for 3 weeks. Another six men served as the control group. After training, significant reductions of the VO2 time constant for exercise at the pretraining LT exercise intensity (P less than 0.05) and at OBLA exercise intensity (P less than 0.01) were observed, whereas the VO2 time constants in the control group did not change significantly. A high correlation between the decrease in the VO2 time constant and training day was observed in exercise at the pretraining LT exercise intensity (r = -0.76; P less than 0.001) as well as in the OBLA exercise intensity (r = -0.91; P less than 0.001). A significant reduction in the blood lactate concentration during submaximal exercise and in the heart rate on-kinetics was observed in the training group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To account for the regulation of cyclic gonadotrophin release, the separate and interactive effects of the hormonal variable at the levels of CNS-hypothalamus, the pituitary and the ovary have been reviewed. The pituitary gonadotrophs, as target cells exhibited a remarkable cyclic change in their capacity which was correlated with the oestradiol levels. The ultimate release is determined by the relative size of the two pools' releasable gonadotrophins which are themselves regulated by the relative inputs of LH-RH and oestradiol, respectively. LH-RH appears to serve as a primary influence on the gonadotroph, stimulating gonadotrophin synthesis, storage and release. Oestradiol, for the most part, amplifies the action of LH-RH and induces the development of a self-priming effect of LH-RH, except that it impedes LH-RH-mediated gonadotrophin release. The pituitary capacity increases several-fold from the early to late follicular phase, and this is considered to be the prerequisite for the development of a mid-cycle surge. CNS-hypothalamic dopamine, norepinephrine, prostaglandins as well as LH-RH systems are involved in the negative and positive feedback effect of oestradiol. The possible steps and interactive elements in the triggering of LH-RH release for the initiation of the mid-cycle LH/FSH surge are considered.  相似文献   

12.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In this study, we investigated whether a heavy strength training program, as an additive to an endurance running program, would cause significant improvements in 3-km run time in a group of recreationally fit women when compared with endurance-only (EO) training. Sixteen women aged between 18 and 27 years of age were randomly assigned to either an EO group (n = 9) or a concurrent strength and endurance (CSE) group (n = 7). A 10-week training program for both groups consisted of an endurance running program performed three afternoons per week. The CSE group also participated in strength training on the morning of each running session. Testing was conducted pre and post training in a 3-km time trial and measured VO2peak, running economy, muscular strength (1 repetition maximum), and body composition and girth. There was a trend (P = 0.07) toward greater improvement in 3-km performance time for the CSE group (106.7 +/- 91.4 seconds) when compared with the EO group (77.3 +/- 93.0 seconds). Further, the CSE group showed an increase in strength levels when compared with the EO group. The CSE group showed significant increases (P 相似文献   

14.
We describe the isotopic exchange of lactate and pyruvate after arm vein infusion of [3-(13)C]lactate in men during rest and exercise. We tested the hypothesis that working muscle (limb net lactate and pyruvate exchange) is the source of the elevated systemic lactate-to-pyruvate concentration ratio (L/P) during exercise. We also hypothesized that the isotopic equilibration between lactate and pyruvate would decrease in arterial blood as glycolytic flux, as determined by relative exercise intensity, increased. Nine men were studied at rest and during exercise before and after 9 wk of endurance training. Although during exercise arterial pyruvate concentration decreased to below rest values (P < 0.05), pyruvate net release from working muscle was as large as lactate net release under all exercise conditions. Exogenous (arterial) lactate was the predominant origin of pyruvate released from working muscle. With no significant effect of exercise intensity or training, arterial isotopic equilibration [(IE(pyruvate)/IE(lactate)).100%, where IE is isotopic enrichment] decreased significantly (P < 0.05) from 60 +/- 3.1% at rest to an average value of 12 +/- 2.7% during exercise, and there were no changes in femoral venous isotopic equilibration. These data show that 1). the isotopic equilibration between lactate and pyruvate in arterial blood decreases significantly during exercise; 2). working muscle is not solely responsible for the decreased arterial isotopic equilibration or elevated arterial L/P occurring during exercise; 3). working muscle releases similar amounts of lactate and pyruvate, the predominant source of the latter being arterial lactate; 4). pyruvate clearance from blood occurs extensively outside of working muscle; and 5). working muscle also releases alanine, but alanine release is an order of magnitude smaller than lactate or pyruvate release. These results portray the complexity of metabolic integration among diverse tissue beds in vivo.  相似文献   

15.
Effect of endurance training on gross energy expenditure during exercise   总被引:1,自引:0,他引:1  
We compared the effect of endurance exercise training on gross energy expenditure (GEE) during steady-state exercise in 20 younger men (31.2 +/- 0.6 years) and 20 middle-aged men (49.2 +/- 1.1 years). The subjects trained for eight months. The training program consisted of three 45-min walking and jogging exercise sessions per week at an intensity of approximately 60-85% of the heart rate at peak VO2. We administered bicycle ergometer tests at 0, 4, and 8 months into training. Participants exercised at a power output of 100 W for 10 min using a pedaling frequency of 50 rpm. We determined GEE (kcal/min) by measuring the oxygen consumption and respiratory exchange ratio. We found a significant reduction (p less than 0.05) in GEE (0.7-1.3 kcal/min) following 4 months of endurance training in both age groups, with a further reduction (p less than 0.05) noted in only the middle-aged group at month 8. We found no difference (p greater than 0.05) in GEE between the younger and middle-aged men. We conclude that chronic exercise may modify GEE during a submaximal exercise bout and that this adaptation is similar in magnitude in younger and middle-aged men.  相似文献   

16.
17.
18.
Anaerobic and aerobic-anaerobic threshold (4 mmol/l lactate), as well as maximal capacity, were determined in seven cross country skiers of national level. All of them ran in a treadmill exercise for at least 30 min at constant heart rates as well as at constant running speed, both as previously determined for the aerobic-anaerobic threshold. During the exercise performed with a constant speed, lactate concentration initially rose to values of nearly 4 mmol/l and then remained essentially constant during the rest of the exercise. Heart rate displayed a slight but permanent increase and was on the average above 170 beats/min. A new arrangement of concepts for the anaerobic and aerobic-anaerobic threshold (as derived from energy metabolism) is suggested, that will make possible the determination of optimal work load intensities during endurance training by regulating heart rate.  相似文献   

19.
It is well known that hyperosmolality suppresses thermoregulatory responses and that plasma osmolality (P(osmol)) increases with exercise intensity. We examined whether the decreased esophageal temperature thresholds for cutaneous vasodilation (TH(FVC)) and sweating (TH(SR)) after 10-day endurance training (ET) are caused by either attenuated increase in P(osmol) at a given exercise intensity or blunted sensitivity of hyperosmotic suppression. Nine young male volunteers exercised on a cycle ergometer at 60% peak oxygen consumption rate (V(O2 peak)) for 1 h/day for 10 days at 30 degrees C. Before and after ET, thermoregulatory responses were measured during 20-min exercise at pretraining 70% V(O2 peak) in the same environment as during ET under isoosmotic or hyperosmotic conditions. Hyperosmolality by approximately 10 mosmol/kgH2O was attained by acute hypertonic saline infusion. After ET, V(O2 peak) and blood volume (BV) both increased by approximately 4% (P < 0.05), followed by a decrease in TH(FVC) (P < 0.05) but not by that in TH(SR). Although there was no significant decrease in P(osmol) at the thresholds after ET, the sensitivity of increase in TH(FVC) at a given increase in P(osmol) [deltaTH(FVC)/deltaP(osmol), degrees C x (mosmol/kgH2O)(-1)], determined by hypertonic infusion, was reduced to 0.021 +/- 0.005 from 0.039 +/- 0.004 before ET (P < 0.05). The individual reductions in deltaTH(FVC)/deltaP(osmol) after ET were highly correlated with their increases in BV around TH(FVC) (r = -0.89, P < 0.005). In contrast, there was no alteration in the sensitivity of the hyperosmotic suppression of sweating after ET. Thus the downward shift of TH(FVC) after ET was partially explained by the blunted sensitivity to hyperosmolality, which occurred in proportion to the increase in BV.  相似文献   

20.
The influence of gender, exercise, and thermal stress on caffeine pharmacokinetics is unclear. We hypothesized that these factors would not have an effect on the metabolism of caffeine. Eight women participated in four 8-h trials and six men participated in two 8-h trials after the ingestion of 6 mg/kg caffeine. The women performed two resting trials (1 in the follicular phase and 1 in the luteal phase of the menstrual cycle) and two exercise trials (90 min of cycling exercise at 65% of maximal O(2) uptake, 1 h after caffeine ingestion) in the follicular phase (1 without and 1 with an additional thermal stress). The men performed one exercise and one resting trial. Menstrual cycle, gender, and exercise, with or without an additional thermal stress, had no effect on the pharmacokinetic measurements or urine caffeine. There was a trend for higher plasma caffeine and lower plasma paraxanthine concentrations in the women. These results confirm that gender, exercise, and thermal stress have no effect on caffeine pharmacokinetics in men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号