首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fission yeast checkpoint protein Crb2, related to budding yeast Rad9 and human 53BP1 and BRCA1, has been suggested to act as an adapter protein facilitating the phosphorylation of specific substrates by Rad3-Rad26 kinase. To further understand its role in checkpoint signaling, we examined its localization in live cells by using fluorescence microscopy. In response to DNA damage, Crb2 localizes to distinct nuclear foci, which represent sites of DNA double-strand breaks (DSBs). Crb2 colocalizes with Rad22 at persistent foci, suggesting that Crb2 is retained at sites of DNA damage during repair. Damage-induced Crb2 foci still form in cells defective in Rad1, Rad3, and Rad17 complexes, but these foci do not persist as long as in wild-type cells. Our results suggest that Crb2 functions at the sites of DNA damage, and its regulated persistent localization at damage sites may be involved in facilitating DNA repair and/or maintaining the checkpoint arrest while DNA repair is under way.  相似文献   

2.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

3.
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.  相似文献   

4.
5.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   

6.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkpoint signaling pathway remain crucial questions. We identified fission yeast Nbs1 by using a comparative genomic approach and showed that the genes for human Nbs1 and fission yeast Nbs1 and that for their budding yeast counterpart, Xrs2, are members of an evolutionarily related but rapidly diverging gene family. Fission yeast Nbs1, Rad32 (the homolog of Mre11), and Rad50 are involved in DNA damage repair, telomere regulation, and the S-phase DNA damage checkpoint. However, they are not required for G(2) DNA damage checkpoint. Our results suggest that a complex of Rad32, Rad50, and Nbs1 acts specifically in the S-phase branch of the DNA damage checkpoint and is not involved in general DNA damage recognition or signaling.  相似文献   

7.
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.  相似文献   

8.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

9.
An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control   总被引:13,自引:0,他引:13  
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.  相似文献   

10.
In eukaryotic cells, the cell cycle checkpoint proteins Rad9, Rad1, and Hus1 form the 9-1-1 complex which is structurally similar to the proliferating cell nuclear antigen (PCNA) sliding clamp. hMSH2/hMSH6 (hMutSα) and hMSH2/hMSH3 (hMutSβ) are the mismatch recognition factors of the mismatch repair pathway. hMutSα has been shown to physically and functionally interact with PCNA. Moreover, DNA methylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment induces the G2/M cell cycle arrest that is dependent on the presence of hMutSα and hMutLα. In this study, we show that each subunit of the human 9-1-1 complex physically interacts with hMSH2, hMSH3, and hMSH6. The 9-1-1 complex from both humans and Schizosaccharomyces pombe can stimulate hMutSα binding with G/T-containing DNA. Rad9, Rad1, and Hus1 individual subunits can also stimulate the DNA binding activity of hMutSα. Human Rad9 and hMSH6 colocalize to nuclear foci of HeLa cells after exposure to MNNG. However, Rad9 does not form foci in MSH6 defective cells following MNNG treatment. In Rad9 knockdown untreated cells, the majority of the MSH6 is in cytoplasm. Following MNNG treatment, Rad9 knockdown cells has abnormal nuclear morphology and MSH6 is distributed around nuclear envelop. Our findings suggest that the 9-1-1 complex is a component of the mismatch repair involved in MNNG-induced damage response.  相似文献   

11.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

12.
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.  相似文献   

13.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

14.
Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 initiates homologous recombination events in the rDNA repeats that are processed by a mechanism that requires Rad22 (Rad52 homologue) but not Rhp51 (Rad51 homologue). Slx1 is required to generate approximately 50% of the spontaneous Rad22 DNA repair foci that occur in cycling cells. Most of these foci colocalize with the nucleolus, which contains the rDNA repeats. The increased fork pausing at the replication fork barriers in the rDNA repeats in a strain that lacks Rqh1 DNA helicase is further increased by expression of a dominant negative form of Slx1. These data suggest that Slx1-Slx4 cleaves paused replication forks in the rDNA, leading to Rad22-dependent homologous recombination that is used to maintain rDNA copy number.  相似文献   

15.
Chromatin mobility is thought to facilitate homology search during homologous recombination and to shift damage either towards or away from specialized repair compartments. However, unconstrained mobility of double-strand breaks could also promote deleterious chromosomal translocations. Here we use live time-lapse fluorescence microscopy to track the mobility of damaged DNA in budding yeast. We found that a Rad52-YFP focus formed at an irreparable double-strand break moves in a larger subnuclear volume than the undamaged locus. In contrast, Rad52-YFP bound at damage arising from a protein-DNA adduct shows no increase in movement. Mutant analysis shows that enhanced double-strand-break mobility requires Rad51, the ATPase activity of Rad54, the ATR homologue Mec1 and the DNA-damage-response mediator Rad9. Consistent with a role for movement in the homology-search step of homologous recombination, we show that recombination intermediates take longer to form in cells lacking Rad9.  相似文献   

16.
A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1(-) mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.  相似文献   

17.
DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in vivo DSBR in single cells. Using this system, we demonstrate for the first time that Rad52 DNA repair foci and DSBs colocalize. Time-lapse microscopy reveals that the relocalization of Rad52 protein into a focal assembly is a rapid and reversible process. In addition, analysis of DNA damage checkpoint-deficient cells provides direct evidence for coordination between DNA repair and subsequent release from checkpoint arrest. Finally, analyses of cells experiencing multiple DSBs demonstrate that Rad52 foci are centres of DNA repair capable of simultaneously recruiting more than one DSB.  相似文献   

18.
The Slx5/Slx8 protein complex, a heterodimeric SUMO-targeted ubiquitin ligase, plays an important role in genomic integrity. Slx5/Slx8 is believed to interact with sumoylated proteins that reside in the nuclei of budding yeast cells. In this complex, Slx5, owing to at least two SUMO interacting motifs (SIMs), has been proposed to be the targeting subunit of the Slx8 ubiquitin ligase. However, little is known about the exact subnuclear localization and targets of Slx5/Slx8. In this study we show that Slx5, but not Slx8, forms prominent nuclear foci. The formation of these foci depends on SUMO and a SIM in Slx5. Therefore, we investigated the subnuclear localization and potential chromatin association of Slx5. Using co-localization studies in live cells and fixed chromatin, we were able to localize Slx5 to DNA damage induced foci of Rad52 and Rad9, two proteins involved in the cellular response to DNA damage. Subsequent chromatin immunoprecipitation (ChIP) studies revealed that Slx5 is associated with HO endonuclease induced chromosome breaks. Surprisingly, real-time PCR analysis of Slx5 ChIPs revealed that the level of Slx5 at HO breaks in an slx8 deletion background is reduced about 4-fold. These results indicate that the DNA-damage targeting of Slx5/Slx8 depends on formation of the heterodimer and that this occurs at a subset of nuclear foci also containing DNA damage repair and checkpoint factors.  相似文献   

19.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

20.
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号