共查询到20条相似文献,搜索用时 15 毫秒
1.
Although normal intracellular levels of arginine are well above the K(m), and should be sufficient to saturate nitric oxide synthase in vascular endothelial cells, nitric oxide production can, nonetheless, be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox," has suggested the existence of a separate pool of arginine directed to nitric oxide synthesis. In this study, we demonstrate that exogenous citrulline was as effective as exogenous arginine in stimulating nitric oxide production and that citrulline in the presence of excess intracellular and extracellular arginine further enhanced bradykinin stimulated endothelial nitric oxide production. The enhancement of nitric oxide production by exogenous citrulline could therefore be attributed to the capacity of vascular endothelial cells to efficiently regenerate arginine from citrulline. However, the regeneration of arginine did not affect the bulk intracellular arginine levels. This finding not only supports the proposal for a unique pool of arginine, but also suggested channeling of substrates that would require a functional association between nitric oxide production and arginine regeneration. To support this proposal, we showed that nitric oxide synthase, and the enzymes involved in arginine regeneration, argininosuccinate synthase and argininosuccinate lyase, cofractionated with plasmalemmal caveolae, a subcompartment of the plasma membrane. Overall, the results from this study strongly support the proposal for a separate pool of arginine for nitric oxide production that is defined by the cellular colocalization of enzymes involved in nitric oxide production and the regeneration of arginine. 相似文献
2.
3.
Endothelial nitric-oxide synthase (eNOS) acts as a common pathogenic pathway in diabetic nephropathy (DN). However, its functional consequences are still not fully understood. Caveolin, a membrane protein, inhibits the eNOS by making caveolin-eNOS complex, and its expression is upregulated during diabetes mellitus (DM). This study was designed to determine the role of caveolin in eNOS-mediated NO synthesis and release in DN. DM in rat was induced by feeding of high-fat diet (HFD) for 2 weeks, followed by single dose of streptozotocin (STZ) (35 mg/kg, ip) further followed by HFD for further 8 weeks. Serum nitrite/nitrate ratio was measured to determine the plasma level of NO. Diabetic rat, after 6 weeks of STZ, developed elevated level of BUN, protein in urine, urinary output, serum creatinine, serum cholesterol, kidney weight, kidney weight/body weight, and renal cortical collagen content, while serum nitrite/nitrate concentration was significantly decreased as compared to normal control group. Treatment with sodium nitrite (NO donor), L: -arginine (NO precursor), daidzein (caveolin inhibitor), and combination of L: -arginine and daidzein for 2 weeks markedly attenuated these changes and increased serum nitrite/nitrate ratio. However, treatment with L-NAME, a eNOS inhibitor, significantly attenuated the L: -arginine-, daidzein-, or combination of L: -arginine and daidzein-induced ameliorative effects in DN. The finding of this study suggests that caveolin plays a vital role in the eNOS-mediated decrease in renal level of NO, which may be responsible for the development of DN in rats. 相似文献
4.
Xinhua Zhan Dechun Li Roger A Johns 《The journal of histochemistry and cytochemistry》2003,51(1):81-87
Endothelial nitric oxide synthase (eNOS), originally found in the endothelium of vascular tissue, also exists in other cell types, including ciliated epithelia of airways. The eNOS is ultrastructurally localized to the basal body of the microtubules of the cilia, and nitric oxide (NO) stimulates ciliary beat frequency (CBF). We examined whether the expression of eNOS is present in ciliated cells of other organs. Western blotting analysis revealed that eNOS was expressed in the rat cerebrum, lung, trachea, testis, and oviduct. Immunohistochemical staining showed that eNOS was localized in the ciliated epithelia of airways, oviduct, testis, and ependymal cells of brain in addition to the endothelium and smooth muscle of the vasculature. To confirm the activation of eNOS in the ciliated epithelia, we examined the effect of L-arginine (L-Arg), the substrate of NOS, on the production of nitrite and nitrate (NOx) in the cultured explants of rat trachea. L-Arg (100 microM) increased NOx levels significantly (p<0.05). In explants exposed to inhibitors of NOS, the effect of l-Arg on the production of NOx was blocked. These findings suggest that epithelial NO plays an important role in signal transduction associated with ciliary functions. 相似文献
5.
Y A Mahmoud K Harada A Nagasaki T Gotoh M Takeya A SalimuddinUeda M Mori 《Nitric oxide》1999,3(4):302-311
Expression of inducible nitric oxide (NO) synthase (iNOS) and related enzymes of arginine metabolism in the mouse lung exposed to filamentous fungus Fusarium kyushuense was studied by RNA blot, immunoblot, and histological analyses. When mice were exposed intranasally to the fungi only once, no induction of iNOS mRNA was observed. However, when the animals were infected again 6 days after the first exposure, iNOS mRNA was induced, reached a maximum 12-24 h after the exposure, and decreased to an undetectable level at 48 h. mRNAs for cationic amino acid transporter-2 (CAT2) and argininosuccinate synthetase were induced gradually, reached a maximum at 24 h, and decreased at 48 h. Arginase II mRNA increased at 24 h and decreased markedly at 48 h. On the other hand, arginase I mRNA started to increase at 24 h and reached to a much higher level at 48 h. Ornithine decarboxylase and ornithine aminotransferase mRNAs were also induced. Immunoblot analysis showed that iNOS, argininosuccinate synthetase, and arginase I and II proteins were induced with similar kinetics as those of their respective mRNAs. In histological examination, fungal elements were observed in the bronchoalveolar lumen at 3-6 h, decreased at 12 h, and almost disappeared at 48 h. Small granuloma appeared 3 h after the infection and their size increased with time. These results suggest that NO is produced in the mouse lung in response to F. kyushuense exposure and that the NO production is regulated by CAT2, the citrulline-NO cycle, and arginase isoforms. Enhanced synthesis of polyamines and proline (and thus collagen) is also suggested. 相似文献
6.
Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats 总被引:11,自引:0,他引:11
Hypercholesterolemia is a dominant risk factor for the development and progression of atherosclerosis and cardiovascular diseases. Natural compounds have been proved to be useful in lowering serum cholesterol to slow down the progression of cardiovascular diseases. Pueraria lobata is employed clinically to treat cardiovascular diseases in China. In the present study, the atheroscleroprotective potential of the herb's major active compound, puerarin, was investigated by monitoring serum lipid profile and major enzyme expressions on cholesterol homeostasis in Sprague-Dawley rats fed with control diet, hypercholesterolmic diet or hypercholesterolmic diet plus administration of puerarin (300 mg/kg/day, p.o.) for 4 weeks. Puerarin markedly attenuated the increased total cholesterol induced by hypercholesterolmic diet in both serum and liver. It caused a significant reduction in the atherogenic index. Expression of mRNA for hepatic 7alpha-hydroxylase (CYP7A1) was significantly enhanced but not for those of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and lanosterol 14alpha-demethylase (CYP51). To further explore the atheroscleroprotective potential of puerarin, acetylcholine induced endothelium-dependent vasorelaxation and endothelial nitric oxide synthase (eNOS) expression on isolated thoracic aortas were analyzed. Animals administered with puerarin suppressed the hypercholesterolemic diet induced impairment of eNOS expression, whereas there was no significant difference in the endothelium-dependent vasorelaxation among various groups of animals. These data indicated that puerarin reduced the atherogenic properties of dietary cholesterol in rats. Its hypocholesterolemic function may be due to the promotion of cholesterol and bile acids excretion in liver. Whether puerarin targets directly on cholesterol homeostasis or both cholesterol homeostasis and endothelial function remains to be determined. 相似文献
7.
Increased expression of endothelial nitric oxide synthase and caveolin-1 in the aorta of rats with isoproterenol-induced cardiac hypertrophy 总被引:1,自引:0,他引:1
Krenek P Klimas J Kroslakova M Gazova A Plandorova J Kucerova D Fecenkova A Svec P Kyselovic J 《Canadian journal of physiology and pharmacology》2006,84(12):1245-1250
Isoproterenol-induced cardiac hypertrophy is associated with increased expression of endothelial nitric oxide synthase in the aorta but without signs of improved endothelial function. The aim was to examine the hypothesis that increased expression of eNOS allosteric inhibitor caveolin-1 could be associated with unimproved endothelium-dependent relaxations. Rats received isoproterenol (5 mg/kg body mass, i.p., n = 13) or its vehicle (n = 14) during 1 week. Systolic blood pressure (SBP) and heart rate (HR) were measured by the tail-cuff method. Expression of eNOS and caveolin-1 was measured using immunoblotting analysis. Relaxations of isolated aorta to acetylcholine and sodium nitroprusside were evaluated ex vivo. After 1 week of isoproterenol administration, basal SBP and HR were decreased (SBP 110 +/- 3 vs. 126 +/- 3 mmHg, p < 0.05; HR 342 +/- 8 vs. 366 +/- 6 beats/min, p < 0.05). Isoproterenol increased the mass of the left ventricle (+33% +/- 4% vs. control; p < 0.05) and right ventricle (+40% +/- 9%; p < 0.05). Isoproterenol administration increased the expression of eNOS (+53% +/- 12%; p < 0.05) and caveolin-1 (+54% +/- 20%, p < 0.05) in the aorta. Relaxation of isolated aorta to acetylcholine and sodium nitroprusside showed a trend towards a worsened endothelial function and a lower sensitivity to exogenous NO. Thus, 1 week of isoproterenol administration led to increased eNOS expression in the aorta without amelioration of endothelial vasorelaxation function. Concomitant increase in caveolin-1 expression may be responsible for this paradox. 相似文献
8.
Neuronal nitric oxide synthase and cyclooxygenase-2 in diabetic nephropathy of type 2 diabetic OLETF rats. 总被引:6,自引:0,他引:6
Akira Yabuki Tomonori Tahara Kazuyuki Taniguchi Mitsuharu Matsumoto Shusaku Suzuki 《Experimental Animals》2006,55(1):17-25
Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) regulate the tubuloglomerular feedback (TGF) and renin-angiotensin system (RAS) in the kidney. In type 1 diabetic rats, renal overproduction of these enzymes and their relationship to the pathogenesis of diabetic nephropathy has been demonstrated. In the present study, we histologically and immunohistochemically investigated the kidneys of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, as a model of type 2 diabetes, at 62 weeks of age (chronic phase of diabetes). The kidneys of OLETF rats showed typical diabetic nephropathy. Quantitative scores for glomerulosclerosis and interstitial fibrosis in OLETF rats were significantly higher than those of age-matched control Long-Evans Tokushima Otsuka (LETO) rats. nNOS- and COX-2-positive immunoreactions were observed in the distal tubules and collecting ducts. These reactions appeared to be more widely distributed in OLETF, and the number of nNOS-and COX-2-positive sites in the OLETF were significantly more than those in LETO rats. Expression of renin, angiotensin II, and inducible nitric oxide synthase (iNOS) were also examined immunohistochemically, and no differences between OLETF and LETO rats were observed in the distributions and the number of immunoreactive-sites. In conclusion, the overproduction of nNOS and COX-2 in the kidney of OLETF rats was confirmed, suggesting that the overproduction of nNOS and/or COX-2 does not affect the intrarenal RAS or iNOS production but does affect TGF. 相似文献
9.
Insulin restores neuronal nitric oxide synthase expression in streptozotocin-induced diabetic rats 总被引:5,自引:0,他引:5
Nitric oxide (NO) is known to play an important role in the pathophysiology of insulin-dependent diabetic mellitus (IDDM). In an attempt to investigate the relation between insulin and NO in IDDM, the present study employed male Wistar rats to induce IDDM by intravenous injection of streptozotocin (STZ). Four groups of rats were used; untreated normal control group, insulin treated STZ group, vehicle-treated STZ control, and one group of age-matched rats which were orally supplied with glucose to increase plasma glucose (glucose-challenged rats). Changes of the activity and gene expression of neuronal nitric oxide synthase (nNOS) were examined in cerebellum and kidney of these groups. The activity of nNOS in cerebellum, determined by conversion of [3H] L-arginine to [3H] L-citrulline, in STZ-induced diabetic rats was markedly lower than normal rats. Insulin treatment reversed the nNOS activity. Similar reversion by insulin treatment was also obtained in the gene expression of nNOS. However, the activity and gene expression of nNOS in glucose-challenged rats were not different from those in normal rats. The role of hyperglycemia can thus be ruled out. These findings indicated that an impairment of nNOS in the brain of rats with IDDM is mainly due to the absence of insulin. 相似文献
10.
11.
Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. 总被引:7,自引:0,他引:7
Hyperglycemia is considered a primary cause of diabetic vascular complications. A hallmark of vascular disease is endothelial cell dysfunction characterized by diminished nitric-oxide (NO)-dependent phenomena such as vasodilation, angiogenesis, and vascular maintenance. This study was designed to investigate the effects of a high level of D-glucose on endothelial NO response, oxidative stress, and glucose metabolism. Bovine aortic endothelial cells (BAECs) were pretreated with a high concentration of glucose (HG) (22 mmol/L) for at least 2 weeks and compared with control cells exposed to 5 mmol/L glucose (NG). The effect of chronic hyperglycemia on endothelial NO-synthase (eNOS) activity and expression, glycogen synthase (GS) activity, extracellular-signal-regulated kinase (ERK 1,2), p38, Akt expression, and Cu/Zn superoxide-dismutse (SOD-1) activity and expression were determined. Western blot analysis showed that eNOS protein expression decreased in HG cells and was accompanied by diminished eNOS activity. The activity of GS was also significantly lower in the HG cells than in NG cells, 25.0+/-17.4 and 89+/-22.5 nmol UDP-glucose.mg protein(-1)x min(-1), respectively. Western blot analysis revealed a 40-60% decrease in ERK 1,2 and p38 protein levels, small modification of phosphorylated Akt expression, and a 30% increase in SOD-1 protein expression in HG cells. Although SOD expression was increased, no change was observed in SOD activity. These results support the findings that vascular dysfunction due to exposure to pathologically high D-glucose concentrations may be caused by impairment of the NO pathway and increased oxidative stress accompanied by altered glucose metabolism. 相似文献
12.
Syamantak Majumder Ajit Muley Gopi Krishna Kolluru Samir Saurabh K P Tamilarasan Sidhharth Chandrasekhar Hima Bindu Reddy Sharad Purohit Suvro Chatterjee 《Biochimie et biologie cellulaire》2008,86(1):1-10
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis. 相似文献
13.
Upregulation of endothelial nitric oxide synthase in rat aorta after ingestion of fish oil-rich diet
López D Orta X Casós K Sáiz MP Puig-Parellada P Farriol M Mitjavila MT 《American journal of physiology. Heart and circulatory physiology》2004,287(2):H567-H572
A previous study with aortic segments isolated from rats fed a fish oil-rich diet indicated an increase in acetylcholine-induced nitric oxide (.NO)-mediated relaxation. However, it remained to be elucidated whether a fish oil-rich diet affects the vascular activity per se and the point of the.NO-cGMP pathway at which fish oil acts. For this purpose, two groups of Sprague-Dawley rats were fed a semipurified diet containing 5% lipids, either corn oil (CO) or menhaden oil (MO), for 8 wk. We studied the mRNA and protein levels of endothelial NO synthase (eNOS) and NOS activity. The bioavailability of vascular.NO was assessed directly by electron spin resonance spectroscopy. The levels of cGMP, l-arginine, and l-citrulline were also evaluated in homogenates. Superoxide anion (O(2)(-).) production and related antioxidant activities were also studied in aortic segments. The aortic content of eNOS mRNA was increased in rats fed the MO-rich diet. This resulted in increases in both eNOS protein levels (70% relative to the rats fed the CO-rich diet) and NOS activity (102%);.NO production increased by 90%, cGMP levels increased by 100%, and l-arginine decreased by 30%. No change in aortic O(2)(-). production was caused by dietary MO. The upregulation of the eNOS-cGMP pathway induced by dietary MO may contribute to the maintenance of vascular homeostasis and explain its beneficial effect in the prevention of arterial diseases. 相似文献
14.
Noguchi K Hamadate N Matsuzaki T Sakanashi M Nakasone J Uchida T Arakaki K Kubota H Ishiuchi S Masuzaki H Sugahara K Ohya Y Sakanashi M Tsutsui M 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H721-H729
An elevation of oxidized forms of tetrahydrobiopterin (BH(4)), especially dihydrobiopterin (BH(2)), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH(2) in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH(2) concentration causes endothelial dysfunction in rats. To increase vascular BH(2) levels, the BH(2) precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH(2) to BH(4). MTX/SEP treatment did not significantly affect aortic BH(4) levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH(2) levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH(4) levels but decreased the BH(4)-to-BH(2) ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations (P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD (P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH(2) causes eNOS dysfunction in vivo even in the absence of BH(4) deficiency, demonstrating a novel insight into the regulation of endothelial function. 相似文献
15.
《Journal of Physiology》1997,91(3-5):235-240
We previously reported the impaired HCO3− secretion and the increased mucosal susceptibility to acid in the duodenum of streptozotocin (STZ)-induced diabetic rats. In this study, we investigated the salutary effect of the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester) on these changes and compared it with those of insulin. Animals were injected streptozotocin (STZ: 70 mg/kg, ip) and used after 1, 3–4, and 5–6 weeks of diabetes with blood glucose levels of > 300 mg/dL. Under urethane anesthesia the HCO3− secretion was measured in the proximal duodenal loop using a pH-stat method and by adding 10 mM HCl. L-NAME (20 mg/kg × 2) or insulin (4 units/rat) was administered sc for 4–5 weeks, starting 1 week after STZ treatment. The duodenal HCO3− secretory responses to various stimuli such as mucosal acidification (10 mM HCl for 10 min), 16,16-dimethyl prostaglandin E2 (dmPGE2: 10 μg/kg, iv), and vagal stimulation (0.5 mA, 2 ms, 3 Hz) were significantly decreased in STZ-treated rats, depending on the duration of diabetes. Repeated administration of L-NAME, starting from 1 week after STZ treatment, significantly reduced blood glucose levels toward normal values and restored the HCO3− responses to various stimuli in STZ rats, the effects being similar to those observed after supplementation of insulin. Diabetic rats developed duodenal lesions after perfusion of the duodenum with 150 mM HCl for 4 h, but this ulcerogenic response was significantly inhibited by the repeated treatment with L-NAME as well as insulin. We conclude that L-NAME is effective in ameliorating hyperglycemic conditions in STZ-diabetic rats, similar to insulin, and restores the impaired HCO3− secretion and the increased mucosal susceptibility to acid in diabetic rat duodenums. 相似文献
16.
Regulation of nitric oxide production by arginine metabolic enzymes 总被引:15,自引:0,他引:15
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, vascular smooth muscle cells, glial cells, neuronal PC12 cells, and pancreatic beta-cells. Cationic amino acid transporter (CAT)-2 is induced in activated macrophages but not in PC12 cells. On the other hand, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and II) are coinduced in lipopolysaccharide (LPS)-activated macrophages. These results indicate that NO production is modulated by the uptake, recycling, and degradation of arginine. 相似文献
17.
Modulation of nitric oxide formation by endothelial nitric oxide synthase gene haplotypes 总被引:4,自引:1,他引:3
Nitric oxide (NO) is a major regulator of the cardiovascular system. However, the effects of endothelial nitric oxide synthase (eNOS) gene polymorphisms or haplotypes on the circulating concentrations of nitrite (a sensitive marker of NO formation) and cGMP are unknown. Here we examined the effects of eNOS polymorphisms in the promoter region (T-786C), in exon 7 (Glu298Asp), and in intron 4 (4b/4a) and eNOS haplotypes on the plasma levels of nitrite and cGMP. We hypothesized that eNOS haplotypes could have a major impact on NO formation. We genotyped 142 healthy subjects by PCR-RFLP. To assess NO formation, the plasma concentrations of nitrite and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Haplotypes were inferred using the PHASE 2.1 program. No significant differences were found in age, body mass index, systolic and diastolic arterial blood pressure, heart rate, total cholesterol, triglycerides, cGMP, or nitrite among the genotype groups for the three polymorphisms studied here (all p>0.05). Interestingly, the C-4b-Glu haplotype was associated with lower plasma nitrite concentrations than those found in the other haplotype groups (p<0.05), but not with different cGMP levels (p>0.05). These findings suggest that eNOS gene variants combined within a specific haplotype modulate NO formation, although individual eNOS polymorphisms probably do not have major effects. 相似文献
18.
This is the first report on the ultrastructural pattern of distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in endothelial cells, using the rabbit aorta, and its colocalization with the neuronal isoform (type I) of nitric oxide synthase. About 30% of the endothelial cells showed a positive reaction for NADPH-d compared to about 6% for nitric oxide synthase immunoreactivity. Simultaneous double histochemical-immunocytochemical labelling procedures indicate that all of the cells displaying nitric oxide synthase-positive reactivity also contained NADPH-d; the remainder of NADPH-d-positive endothelial cells were negative for this isoform of nitric oxide synthase. Nitric oxide synthase-immunogold labelling was mostly associated with free ribosomes, while NADPH-d activity was distributed largely in patches in the cytoplasm and in association with the cell membrane. 相似文献
19.
Molecular cloning and characterization of human endothelial nitric oxide synthase. 总被引:22,自引:0,他引:22
P A Marsden K T Schappert H S Chen M Flowers C L Sundell J N Wilcox S Lamas T Michel 《FEBS letters》1992,307(3):287-293
20.
P W Shaul 《Steroids》1999,64(1-2):28-34
Estrogen is an important atheroprotective molecule that causes the rapid dilation of blood vessels by stimulating endothelial nitric oxide synthase (eNOS). There is also evidence that estrogen modulates airway epithelial NO production, thereby potentially affecting bronchial hyperresponsiveness. Studies in cultured endothelial and airway epithelial cells indicate that physiologic concentrations of estrogen cause rapid direct activation of eNOS that is unaffected by actinomycin D, but fully inhibited by estrogen receptor (ER) antagonism. Overexpression of ERalpha leads to marked enhancement of the acute response to estrogen, and this process is blocked by ER antagonism, it is specific to estrogen, and it requires the ERalpha hormone binding domain. In addition, the acute response of eNOS to estrogen can be reconstituted in COS-7 cells cotransfected with wild-type ERalpha and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of calcium influx, or tyrosine kinases or MAP kinase prevents the stimulation of eNOS by estrogen, and estrogen causes rapid ER-dependent activation of MAP kinase. These findings indicate that the acute effects of estrogen on both endothelial and airway epithelial eNOS are mediated by ERalpha functioning in a novel, nongenomic manner to activate the enzyme via calcium-dependent, MAP kinase-dependent mechanisms. 相似文献