首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-alpha with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-alpha suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-alpha may be mediated, in part, via the NF-kappaB signaling pathway. These findings demonstrate that TNF-alpha coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-alpha is an added insult to endothelial function because of its important role in NO production and in endothelial viability.  相似文献   

2.
3.
4.
5.
Regulation of nitric oxide production by arginine metabolic enzymes   总被引:15,自引:0,他引:15  
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, vascular smooth muscle cells, glial cells, neuronal PC12 cells, and pancreatic beta-cells. Cationic amino acid transporter (CAT)-2 is induced in activated macrophages but not in PC12 cells. On the other hand, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and II) are coinduced in lipopolysaccharide (LPS)-activated macrophages. These results indicate that NO production is modulated by the uptake, recycling, and degradation of arginine.  相似文献   

6.
Nitric oxide (NO) is normally synthesized inside skeletal muscle fibers by both endothelial (eNOS) and neuronal (nNOS) nitric oxide synthases. In this study, we evaluated the influence of hypobaric hypoxia on the expression of NOS isoforms, argininosuccinate synthetase (AS), argininosuccinate lyase (AL), and manganese superoxide dismutase (Mn SOD) in the ventilatory muscles. Rats were exposed to hypobaric hypoxia ( approximately 95 mmHg) from birth for 60 days or 9-11 mo. Age-matched control groups of rats also were examined. Sixty days of hypoxia elicited approximately two- and ninefold increases in diaphragmatic eNOS and nNOS protein expression (evaluated by immunoblotting), respectively, and about a 50% rise in diaphragmatic NOS activity. In contrast, NOS activity and the expression of these proteins declined significantly in response to 9 mo of hypoxia. Hypoxia elicited no significant alterations in AS, AL and Mn SOD protein expression. Moreover, the inducible NOS (iNOS) was not detected in normoxic and hypoxic diaphragmatic samples. We conclude that diaphragmatic NOS expression and activity undergo significant adaptations to hypobaric hypoxia and that iNOS does not participate in this response.  相似文献   

7.
8.
9.
Li ZL  Liu JC  Liu SB  Li XQ  Yi DH  Zhao MG 《PloS one》2012,7(6):e38787
The G-protein coupled estrogen receptor 30 (GPR30) is a seven-transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. This receptor is highly expressed in the cardiovascular system, and exerts vasodilatory effects. The objective of the present study was to investigate the effects of GPR30 on vascular responsiveness in diabetic ovariectomized (OVX) rats and elucidate the possible mechanism involved. The roles of GPR30 were evaluated in the thoracic aorta and cultured endothelial cells. The GPR30 agonist G1 induced a dose-dependent vasodilation in the thoracic aorta of the diabetic OVX rats, which was partially attenuated by the nitric oxide synthase (NOS) inhibitor, nitro-L-arginine methylester (L-NAME) and the GPR30-selective antagonist G15. Dose-dependent vasoconstrictive responses to phenylephrine were attenuated significantly in the rings of the thoracic aorta following the acute G1 administration in the diabetic OVX rats. This effect of G1 was abolished partially by L-NAME and G15. The acute administration of G1 increased significantly the eNOS activity and the concentration of NO in the endothelial cells exposed to high glucose. G1 treatment induced an enhanced endothelium-dependent relaxation to acetylcholine (Ach) in the diabetic OVX rats. Further examination revealed that G1 induced vasodilation in the diabetic OVX rats by increasing the phosphorylation of eNOS. These findings provide preliminary evidence that GPR30 activation leads to eNOS activation, as well as vasodilation, to a certain degree and has beneficial effects on vascular function in diabetic OVX rats.  相似文献   

10.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

11.
In the brain, three isoforms of nitric oxide (NO) synthase (NOS), namely neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial NOS (eNOS, NOS3), have been implicated in biological roles such as neurotransmission, neurotoxicity, immune function, and blood vessel regulation, each isoform exhibiting in part overlapping roles. Previous studies showed that iNOS is induced in the brain by systemic treatment with lipopolysaccharide (LPS), a Gram-negative bacteria-derived stimulant of the innate immune system. Here we found that eNOS mRNA is induced in the rat brain by intraperitoneal injection of LPS of a smaller amount than that required for induction of iNOS mRNA. The induction of eNOS mRNA was followed by an increase in eNOS protein. Immunohistochemical analysis revealed that eNOS is located in astrocytes of both gray and white matters as well as in blood vessels. Induction of eNOS in response to a low dose of LPS, together with its localization in major components of the blood-brain barrier, suggests that brain eNOS is involved in early pathophysiologic response against systemic infection before iNOS is induced with progression of the infection.  相似文献   

12.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

13.
Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA. Two other extended 5'-UTR forms of AS mRNA, resulting from upstream initiations, contain an out-of-frame, upstream open reading frame (uORF). In this study, the function of the extended 5'-UTRs of AS mRNA was investigated. Single base insertions to place the uORF in-frame, and mutations to extend the uORF, demonstrated functionality, both in vitro with AS constructs and in vivo with luciferase constructs. Overexpression of the uORF suppressed endothelial AS protein expression, whereas specific silencing of the uORF AS mRNAs resulted in the coordinate up-regulation of AS protein and NO production. Expression of the full-length of the uORF was necessary to mediate a trans-suppressive effect on endothelial AS expression, demonstrating that the translation product itself affects regulation. In conclusion, the uORF found in the extended, overlapping 5'-UTR AS mRNA species suppresses endothelial AS expression, providing a novel mechanism for regulating endothelial NO production by limiting the availability of arginine.  相似文献   

14.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

15.

Background

The efficacy of Phosphodiesterase 5 (PDE5) inhibitors to re-establish endothelial function is reduced in diabetic patients. Recent evidences suggest that therapy with PDE5 inhibitors, i.e. sildenafil, may increase the expression of nitric oxide synthase (NOS) proteins in the heart and cardiomyocytes. In this study we analyzed the effect of sildenafil on endothelial cells in insulin resistance conditions in vitro.

Methodology/Principal Findings

Human umbilical vein endothelial cells (HUVECs) were treated with insulin in presence of glucose 30 mM (HG) and glucosamine 10 mM (Gluc-N) with or without sildenafil. Insulin increased the expression of PDE5 and eNOS mRNA assayed by Real time-PCR. Cytofluorimetric analysis showed that sildenafil significantly increased NO production in basal condition. This effect was partially inhibited by the PI3K inhibitor LY 294002 and completely inhibited by the NOS inhibitor L-NAME. Akt-1 and eNOS activation was reduced in conditions mimicking insulin resistance and completely restored by sildenafil treatment. Conversely sildenafil treatment can counteract this noxious effect by increasing NO production through eNOS activation and reducing oxidative stress induced by hyperglycaemia and glucosamine.

Conclusions/Significance

These data indicate that sildenafil might improve NOS activity of endothelial cells in insulin resistance conditions and suggest the potential therapeutic use of sildenafil for improving vascular function in diabetic patients.  相似文献   

16.
17.
尾加压素对新生大鼠心肌细胞一氧化氮合成的影响   总被引:6,自引:0,他引:6  
Li L  Yuan WJ  Pan XJ  Wang WZ  Qiu JW  Tang CS 《生理学报》2002,54(4):307-310
应用半定量逆转录-多聚酶链反应法,观察尾加压素(urotensin Ⅱ,UⅡ)对培养的新生SD大鼠心肌细胞内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)mRNA表达的影响,并测定UⅡ对心肌细胞内一氧化氮合酶(nitric oxide synthase,NOS)活性和一氧化氮(nitric oxide,NO)释放的影响。结果显示:UⅡ抑制培养的新生大鼠心肌细胞eNOS mRNA表达、抑制NOS的活性及NO释放;0.1μmol/L浓度的UⅡ呈时间依赖性抑制心肌细胞NOS的活性及NO生成。上述实验结果提示UⅡ的心血管作用可能与NO合成系统有关。  相似文献   

18.
19.
Elevated extracellular D-glucose increases transforming growth factor beta1 (TGF-beta1) release from human umbilical vein endothelium (HUVEC). TGF-beta1, via TGF-beta receptors I (TbetaRI) and TbetaRII, activates Smad2 and mitogen-activated protein kinases p44 and p42 (p42/44(mapk)). We studied whether D-glucose-stimulation of L-arginine transport and nitric oxide synthesis involves TGF-beta1 in primary cultures of HUVEC. TGF-beta1 release was higher ( approximately 1.6-fold) in 25 mM (high) compared with 5 mM (normal) D-glucose. TGF-beta1 increases L-arginine transport (half maximal effect approximately 1.6 ng/ml) in normal D-glucose, but did not alter high D-glucose-increased L-arginine transport. TGF-beta1 and high D-glucose increased hCAT-1 mRNA expression ( approximately 8-fold) and maximal transport velocity (V(max)), L-[(3)H]citrulline formation from L-[(3)H]arginine (index of NO synthesis) and endothelial NO synthase (eNOS) protein abundance, but did not alter eNOS phosphorylation. TGF-beta1 and high D-glucose increased p42/44(mapk) and Smad2 phosphorylation, an effect blocked by PD-98059 (MEK1/2 inhibitor). However, TGF-beta1 and high D-glucose were ineffective in cells expressing a truncated, negative dominant TbetaRII. High D-glucose increases L-arginine transport and eNOS expression following TbetaRII activation by TGF-beta1 involving p42/44(mapk) and Smad2 in HUVEC. Thus, TGF-beta1 could play a crucial role under conditions of hyperglycemia, such as gestational diabetes mellitus, which is associated with fetal endothelial dysfunction.  相似文献   

20.
Although cellular levels of arginine greatly exceed the apparent K(m) for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of l-arginine from l-citrulline. Western blot analysis demonstrated a significant and dose-dependent reduction of AS protein as a result of AS small interfering RNA treatment with a corresponding diminished capacity to produce basal or stimulated levels of NO, despite saturating levels of arginine in the medium. Unanticipated, however, was the finding that the viability of AS small interfering RNA-treated endothelial cells was significantly decreased when compared with control cells. Trypan blue exclusion analysis suggested that the loss of viability was not because of necrosis. Two indicators, reduced expression of Bcl-2 and an increase in caspase activity, which correlated directly with reduced expression of AS, suggested that the loss of viability was because of apoptosis. The exposure of cells to an NO donor prevented apoptosis associated with reduced AS expression. Overall, these results demonstrate the essential role of AS for endothelial NO production and cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号