首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principle of using a chemically synthesized, well-defined branched oligosaccharide to provide a more detailed knowledge of the substrate specificity of starch synthase II (SSII) is demonstrated. The branched nonasaccharide, 6"'-alpha-maltotriosyl-maltohexaose, was investigated as a primer for particulate SSII using starch granules prepared from the low-amylose pea mutant lam as the enzyme source. The starch granule preparation from the lam pea mutant contains no starch synthases other than SSII and is devoid of alpha-amylase, beta-amylase and phosphorylase activity. SSII was demonstrated to catalyse a specific nonprocessive elongation of the nonreducing end of the shortest unit chain of 6"'-alpha-maltotriosyl-maltohexaose, i.e. the maltotriose chain. Maltotriose and maltohexaose, representing the two linear building units of the branched nonasaccharide, were also tested as primers for SSII. Maltotriose was elongated more efficiently than 6"'-alpha-maltotriosyl-maltohexaose and maltohexaose was used less efficiently. Compared to the surface exposed alpha-glucan chains of the granule bound amylopectin molecules, all three soluble oligosaccharides tested were poor primers for SSII. This indicates that in vivo, the soluble oligosaccharides supposedly released as result of amylopectin trimming reactions are not re-introduced into starch biosynthetic reactions via the action of the granule bound fraction of SSII.  相似文献   

2.
A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer.  相似文献   

3.
Starch isolated from mature Ginkgo biloba seeds and commercial normal maize starches were subjected to α-amylolysis and acid hydrolysis. Ginkgo starch was more resistant to pancreatic α-amylase hydrolysis than the normal maize starch. The chain length distribution of debranched amylopectin of the starches was analyzed by using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector. The chain length distribution of ginkgo amylopectin showed higher amounts of both short and long chains compared to maize starch. Naegeli dextrins of the starches prepared by extensive acid hydrolysis over 12 days demonstrated that ginkgo starch was more susceptible than normal maize to acid hydrolysis. Ginkgo dextrins also demonstrate a lower concentration of singly branched chains than maize dextrins, and unlike maize dextrin, debranched ginkgo shows no multiple branched chains. The ginkgo starch displayed a C-type X-ray diffraction pattern, compared to an A-type pattern for maize. Ginkgo starch and maize starch contained 24.0 and 17.6% absolute amylose contents, respectively.  相似文献   

4.
The formation of intermediary glucans, mature starch, and phytoglycogen was studied using leaves of Arabidopsis thaliana wild type and dbe mutant, which lacks plastidic isoamylase (Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., and Chen, J. (1998) Plant Cell 10, 1699-1711). A new approach to the study of starch biosynthesis was developed based on "very short pulse" labeling of leaf starch through photosynthetic fixation of (14)CO(2). This allowed selective analysis of the structure of starch formed within a 30-s period. This time frame is shorter than the period required for the formation of a single crystalline amylopectin lamella and consequently permits a direct analysis of intermediary structures during granule formation. Analysis of chain length distribution showed that the most recently formed outer layer of the granules has a structure different from the mature starch. The outer layer is enriched in short chains that are 6-11 glucose residues long. Side chains with 6 glucose residues are the shortest abundant chains formed, and they are formed exclusively by transfer from donor chains of 12 glucose residues or longer. The labeling pattern shows that chain transfer resulting in branching is a rapid and efficient process, and the preferential labeling of shorter chains in the intermediary granule bound glucan is suggested to be a direct consequence of efficient branching. Although similar, the short chain intermediary structure is not identical to phytoglycogen, which is an even more highly branched molecule with very few longer chains (more than 40 glucose residues). Pulse and chase labeling profiles for the dbe mutant showed that the final structure is more highly branched than the intermediary structures, which implies that branching of phytoglycogen occurs over a longer time period than branching of starch.  相似文献   

5.
Ways to simulate the making of clear noodles from mung bran starch were investigated by studying the molecular structures of mung bean and tapioca starches. Scanning electron micrographs showed that tapioca starch granules were smaller than those of mung bean starch. X-ray diffraction patterns of mung bean and tapioca starch were A- and CA-patterns, respectively. Iodine affinity studies indicated that mung bean starch contained 37% of apparent amylose and tapioca starch contained 24%. Gel permeation chromatograms showed that mung bean amylopectin had longer peak chain-length of long-branch chains (DP 40) than that of tapioca starch (DP 35) but shorter peak chain-length of short-branch chains (DP 16) than that of tapioca starch (DP 21). P-31 n.m.r. spectroscopy showed that both starches contained phosphate monoesters, but only mung bean starch contained phospholipids. Physical properties, including pasting viscosity, gel strength, and thermal properties (gelatinization), were determined. The results of the molecular structure study and physical properties were used to develop acceptable products using mixtures of cross-linked tapioca and high-amylose maize starches. Tapioca starch was cross-linked by sodium trimetaphosphate (STMP) with various reaction times, pH values, and temperatures. The correlation between those parameters and the pasting viscosity were studied using a visco/amylograph. Starches, cross-linked with 0.1% STMP, pH 11.0, 3.5 h reaction time at 25, 35, and 45°C (reaction temperature), were used for making noodles. High-amylose maize starch (70% amylose) was mixed at varying ratios (9, 13, 17, 28, 37, and 44%) with the cross-linked tapioca starches. Analysis of the noodles included: tensile strength, water absorption, and soluble loss. Noodle sensory properties were evaluated using trained panelists. Noodles made from a mixture of cross-linked tapioca starch and 17% of a high-amylose starch were comparable to the clear noodles made from mung bean starch.  相似文献   

6.
Structure and hydrodynamic properties of plectin molecules   总被引:15,自引:0,他引:15  
Plectin is a cytoskeletal, high molecular weight protein of widespread and abundant occurrence in cultured cells and tissues. To study its molecular structure, the protein was purified from rat glioma C6 cells and subjected to chemical and biophysical analyses. Plectin's polypeptide chains have an apparent molecular weight of 300,000, as shown by one-dimensional sodium dodecyl sulfate/polyacrylamide electrophoresis. Cross-linking of non-denatured plectin in solution with dimethyl suberimidate and electrophoretic analyses on sodium dodecyl sulfate/agarose gels revealed that the predominant soluble plectin species was a molecule of 1200 X 10(3) Mr consisting of four 300 X 10(3) Mr polypeptide chains. Hydrodynamic properties of plectin in solution were obtained by sedimentation velocity centrifugation and high-pressure liquid chromatography analysis yielding a sedimentation coefficient of 10 S and a Stokes radius of 27 nm. The high f/fmin ratio of 4.0 indicated a very elongated shape of plectin molecules and an axial ratio of about 50. Shadowing and negative staining electron microscopy of plectin molecules revealed multiple domains: a rigid rod of 184 nm in length and 2 nm in diameter, and two globular heads of 9 nm diameter at each end of the rod. Circular dichroism spectra suggested a composition of 30% alpha-helix, 9% beta-structure and 61% random coil or aperiodic structure. The rod-like shape, the alpha-helix content as well as the thermal transition within a midpoint of 45 degrees C and the transition enthalpy (168 kJ/mol) of secondary structure suggested a double-stranded, alpha-helical coiled coil rod domain. Based on the available data, we favor a model of native plectin as a dumb-bell-like association of four 300 X 10(3) Mr polypeptide chains. Electron microscopy and turbidity measurements showed that plectin molecules self-associate into various oligomeric states in solutions of nearly physiological ionic strength. These interactions apparently involved the globular end domains of the molecule. Given its rigidity and elongated shape, and its tendency towards self-association, plectin may well be an interlinking element of the cytoskeleton that may also form a network of its own.  相似文献   

7.
Starch from AC Hill oat grains (Avena nuda) was isolated and some of the characteristics determined. The yield of starch was 23·4% on a whole grain basis. The shape of the granule was polyhedral to irregular, with granules 6–10 μm in diameter. Lipids were extracted by acid hydrolysis and by selective solvent extraction with chloroform-methanol 2:1 v/v (CM) at ambient temperature, followed by n-propanol-water 3:1 v/v (PW) at 90–100°C. The acid hydrolyzed extracts which represented the total starch lipids (TSL) was 1·13%. The free lipids in the CM extract (1% TSL) was 6·2%, whereas the free and bound lipids in the PW extracts was 93.0%. Neutral lipids formed the major lipid class in the CM and PW extracts. The monoacyl lipid content in both CM and PW extracts was 61·0%. The total amylose content was 19·4%, of which 13·9% was complexed by native lipids. X-ray diffraction was of the ‘A’ type. Oat starch differed from wheat starch in showing a higher swelling factor, decreased amylose leaching, coleaching of a branched starch component and amylose during the pasting process, higher peak viscosity and set-back, low gel rigidity, greater susceptibility towards acid hydrolysis, greater resistance to -amylase action and a higher freeze-thaw stability. Furthermore, in comparison to wheat starch, the amylose chains of oat starch appear to be more loosely arranged in the amorphous regions, whereas in crystalline regions, oat starch chains are more compactly packed. Lipid removal from oat and wheat starches decreased their swelling factor, peak viscosity, set-back, gelatinization temperatures, freeze-thaw stability and paste clarity (at pH > 4·0), and increased their thermal stability, amylose leaching, enthalpy of gelatinization, susceptibility towards -amylase and paste clarity (at pH < 4·0). The results also showed that the properties of AC Hill oat starch is not representative of oat starch in general.  相似文献   

8.
Potato tuber starch was genetically engineered in the plant by the simultaneous antisense suppression of the starch branching enzyme (SBE) I and II isoforms. Starch prepared from 12 independent lines and three control lines were characterised with respect to structural and physical properties. The lengths of the amylopectin unit chains, the concentrations of amylose and monoesterified phosphate were significantly increased in the transgenically engineered starches. Size exclusion chromatography with refractive index detection (SEC-RI) indicated a minor decrease in apparent molecular size of the amylose and the less branched amylopectin fractions. Differential scanning calorimetry (DSC) revealed significantly higher peak temperatures for gelatinisation and retrogradation of the genetically engineered starches whereas the enthalpies of gelatinisation were lower. Aqueous gels prepared from the transgenic starches showed increased gel elasticity and viscosity. Principle component analysis (PCA) of the data set discriminated the control lines from the transgenic lines and revealed a high correlation between phosphate concentration and amylopectin unit chain length. The PCA also indicated that the rheological characteristics were primarily influenced by the amylose concentration. The phosphate and the amylopectin unit chain lengths had influenced primarily the pasting and rheological properties of the starch gels.  相似文献   

9.
Intima collagen was obtained from pepsin digests of human placenta in two forms, which differ to some extent in the size of their constituent polypeptide chains (Mr 50 000-70 000). These chains are connected by disulphide bonds to large aggregates. The aggregates are arranged in a triple-helical conformation with a remarkably high thermal stability (Tm 41-62 degrees C) and are resistant to further proteolytic digestion. Reduction of as little as 5% of the disulphide bonds produces mainly monomeric triple helices (Mr about 160 000) with Tm 32 degrees C. Partially reduced material can be separated into triple-helical and non-collagenous domains by proteolysis. Pepsin releases a collagenous component with chains of Mr 38 000. Bacterial collagenase liberates two non-collagenous segments (Mr 15 000-30 000) rich in cystine. Treatment with collagenase before reduction separates intima collagen into a large fragment composed of collagenous (Tm 41 degrees C) and non-collagenous structures and a single non-collagenous segment. The data support the electron-microscopical model of intima collagen [Furthmayr, Wiedemann, Timpl, Odermatt & Engel (1983) Biochem. J. 211, 303-311], indicating that the basic unit of the fragment consists of a continuous triple helix joining two globular domains.  相似文献   

10.
Starch biosynthesis in cereal endosperm   总被引:3,自引:0,他引:3  
Stored starch generally consists of two d-glucose homopolymers, the linear polymer amylose and a highly branched glucan amylopectin that connects linear chains. Amylopectin structurally contributes to the crystalline organization of the starch granule in cereals. In the endosperm, amylopectin biosynthesis requires the proper execution of a coordinated series of enzymatic reactions involving ADP glucose pyrophosphorylase (AGPase), soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), whereas amylose is synthesized by AGPase and granule-bound starch synthase (GBSS). It is highly possible that plastidial starch phosphorylase (Pho1) plays an important role in the formation of primers for starch biosynthesis in the endosperm. Recent advances in our understanding of the functions of individual enzyme isoforms have provided new insights into how linear polymer chains and branch linkages are synthesized in cereals. In particular, genetic analyses of a suite of mutants have formed the basis of a new model outlining the role of various enzyme isoforms in cereal starch production. In our current review, we summarize the recent research findings related to starch biosynthesis in cereal endosperm, with a particular focus on rice.  相似文献   

11.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   

12.
Clusters of chains consisting of tightly branched units of building blocks were isolated from 10 amylopectin samples possessing the 4 types of amylopectin with different internal unit chain profiles previously described. It was shown that clusters in types 1 and 2 amylopectins are larger than in types 3 and 4, but the average cluster size did not correspond to the ratio of short to long chains of the amylopectins. The size-distribution of the building blocks, having one or several branches, possessed generally only small differences between samples. However, the length of the interblock segments followed the type of amylopectin structure, so that type 1 amylopectins had shortest and type 4 the longest segments. The chains in the clusters were divided into characteristic groups probably being involved in the interconnection of two, three, and four - or more - building blocks. Long chains were typically found in high amounts in clusters from type 4 amylopectins, however, all cluster samples contained long chains. The results are discussed in terms of the building block structure of amylopectin, in which the blocks together with the interblock segments participate in a branched backbone building up the amorphous lamellae inside growth rings of the starch granules. In such a model, amylopectins with proportionally less long chains (types 1 and 2) possess a more extensively branched backbone compared to those with more long chains (types 3 and 4).  相似文献   

13.
14.
Antigen-specific T-helper factor (ThF) of CBA (H-2k) origin in the picryl (TNP) contact sensitivity system (Mr 60-70 kDa) was reduced with dithiothreitol under mild conditions. Affinity chromatography on antigen yielded an antigen-binding chain (Mr 20-30 kDa) and an antigen-nonbinding chain (Mr 40-50 kDa). Both chains were glycoproteins and were bound by lentil lectin. Affinity chromatography on anti-I-A monoclonal antibodies showed that I-A determinants occurred on the complete molecule and on the antigen-nonbinding, but not on the antigen-binding, chain. In contrast, five different monoclonal antibodies to I-E alpha failed to absorb ThF. Moreover, the complete molecule and the I-A+ antigen-nonbinding chains had determinants of the alpha and beta chains of I-A and conformational determinants which are based on both chains. Sequential absorption and elution showed that A alpha and A beta determinants occurred on the same molecular complex. These data suggest a minimal model of ThF as a two-chain disulfide-bonded structure with an antigen-binding chain and a separate I-A+ antigen-nonbinding chain which behaves as a single unit in phosphate-buffered saline and has elements of both A alpha and A beta.  相似文献   

15.
Water-soluble polysaccharides from Ginkgo biloba leaves.   总被引:5,自引:0,他引:5  
J Kraus 《Phytochemistry》1991,30(9):3017-3020
The water-soluble polysaccharides from dried Ginkgo biloba leaves were isolated after exhaustive extraction with organic solvents. The polysaccharide mixture could be separated into a neutral (GF1) and two acidic (GF2 and GF3) polysaccharide fractions by ion exchange chromatography. According to the Mr distribution GF1 and GF3 seemed to be homogenous, whereas GF2 could be further fractionated into two subfractions (GF2a and GF2b) by gel permeation chromatography. GF1 (Mr 23,000) showed the structural features of a branched arabinan. The main chain was composed of 1,5-linked arabinose residues and three in 12 arabinose molecules were branched via C-2 or C-3. GF2a (Mr 500,000) consisted mainly of 1,2,4-branched mannose (29%), 1,4-linked glucuronic (32%) and galacturonic (8%) acid as well as terminal rhamnose (25%). After removal of ca 70% of the terminal rhamnose the remaining polysaccharide showed a decrease in 1,2,4-branched mannose and an increase in 1,2-linked mannose indicating that at least half of the rhamnose residues were linked to mannose via C-4. GF3 (Mr 40,000) consisted of 1,4-linked galacturonic (30%) and glucuronic (16) acid, 1,3,6-branched galactose (15%), 1,2-linked (5%) and 1,2,4-branched (3.5%) rhamnose as well as 1,5-linked arabinose (11%). Rhamnose (5%) and arabinose (10%) were present as terminal groups. Mild acid hydrolysis selectively cleaved arabinose and the remaining polysaccharide showed an increased amount of 1,6-linked and terminal galactose and a decreased quantity of 1,3,6-branched galactose. These results indicated that the terminal as well as the 1,5-linked arabinose were mainly connected to galactose via C-3. The GF3 polysaccharide appeared to be a rhamnogalacturonan with arabinogalactan side chains.  相似文献   

16.
This study aimed to gain a deep understanding of the preparation mechanism of the thermoplastic potato starch (TPPS) by using melt-mixing as a production method, to pursue the changes occurred on the microstructure, morphology and thermal properties of potato starch, TPPS was prepared using a mixture of potato starch with glycerol and water as plasticizer in an internal mixer. The steps of the phase transition, happening by applying harsh conditions (60 rpm, 160 °C, and 7 min), were followed by monitoring the evolution of torque during the mixing time. It was shown that the granules structure was destroyed and a new phase was formed. This was proved by SEM which gave the evidence that the morphology of the TPPS was homogeneous with the smooth surface means that the mixing conditions used in this work were good enough to obtain the thermoplastic starch with a high level of homogeneity in all dimensions. FTIR analysis allowed deducing the formation of new H-bonds between the starch and plasticizers molecules instead of intra and intermolecular H-bonds in the native starch that was destructed through the melt-mixing process., These caused starch chains gain mobility and as the results decreasing in crystallinity, where the XRD analysis exhibited that the crystallinity decreased from 14.5% resulting from B-type in native potato starch to 9% resulting from B-type and VH-type in TPPS. TGA and DSC analysis proved a decreasing in the thermal stability in the TPPS as compared to the starch granules.  相似文献   

17.
A low glycemic index starch was developed by partial alpha-amylase treatment, and its fine structure responsible for slowly digestible and resistant properties was investigated. Different digestion rates were obtained for gelatinized, retrograded starch by varying the enzyme dosage and reaction time. Analysis by high performance size-exclusion chromatography (HPSEC) coupled with multiangle laser-light scattering indicated that the molecular weighs of amylopectin and amylose were reduced during the digestion, to less than 100 kDa. A debranched chain length study using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector and HPSEC revealed that short chains of amylopectin and noncrystalline amylose were rapidly digested, while DPn 121 chains showed resistance, followed by DPn 46 chains. X-ray diffraction analysis revealed that the crystalline structure in the treated starches survived cooking. These starches not only have slowly digestible and resistant character, but also retain some branched structure for adequate functionality.  相似文献   

18.
The molecular structure of starch granules formed in suspension-cultured cells of Ipomoea cordatotriloba Denn. was characterized by its chain length distribution, which was compared to those of the starches from the root and leaf of the original plant. The cultured cell starches were spherical and had a very small granule size (about 2 μm). The debranched starches roughly separated into three fractions during gel-permeation chromatography, and the fractions were defined as Fr.1, 2, and 3, respectively. The chain length distribution of the debranched cultured cell starch showed that the high molecular weight fraction (Fr.1), referred to as an amylose fraction, was much less than those of the root and leaf starches. The ratio of the two lower fractions (Fr.3/Fr.2) of the cultured cell starch, which was mainly derived from unit chains of amylopectin, was greatest among the starches, suggesting that the amylopectin from the cultured cell starch has much shorter unit chains. By X-ray diffraction analysis, it was found that both cultured cell and leaf starch granules have low crystallinity.  相似文献   

19.
A series of pegylated polypeptoids have been readily synthesized by a strategy combining ring-opening polymerization (ROP) and thiol-yne photoaddition. The polypeptoids simultaneously incorporated branched oligo(ethylene glycol) (OEG) units and thioether bonds in the side-chains. All the polypeptoids are readily soluble in aqueous solution and show reversible thermo-responsive properties. The cloud points (CPs) were demonstrated to be readily tunable in the range of ~25 °C-60 °C by varying the chemical composition, OEG chain length and the degree of polymerization. Attractively, the chemical compositions of the side chains are readily tunable via adjusting the molar ratios of a mixture of thiol terminated OEG molecules, which avoid synthesizing new monomers or copolymerization of different monomers. Further, the oxidation/reduction of thioether groups shows significant influence on the CPs, providing a second stimulus to tune the phase transition behaviors. Considering the biocompatibility and degradability, the dual-responsive polypeptoids are potential candidates for various biomedical or biotechnological applications.  相似文献   

20.
After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号