首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UPAR is a GPI anchored protein, which is found in both lipid rafts and in more fluid regions of the plasma membrane. We have studied the role of the ligand uPA on uPAR localization and on the composition of the lipid membrane microdomains. We have analyzed the glycosphingolipid environment of uPAR in detergent resistant membrane (DRM) fractions prepared by cell lysis with 1% Triton X-100 and fractionated by sucrose gradient centrifugation obtained from HEK293-uPAR cells. The uPAR specific lipid membrane microdomain has been separated from the total DRM fraction by immunoprecipitation with an anti-uPAR specific antibody under conditions that preserve membrane integrity. We have also tested uPA-induced ERK phosphorylation in the presence of methyl-β-cyclodextrin, which is known to disrupt lipid rafts by sequestering cholesterol from such domains. Our results show that uPAR is partially associated with DRM and this association is increased by ligands, is independent of the catalytic activity of uPA, and is required for intracellular signalling. In the absence of ligands, uPAR experiences a lipid environment very similar to that of total DRM, enriched in sphingomyelin and glycosphingolipids. However, after treatment of cells with uPA or ATF the lipid environment is strongly impoverished of neutral glycosphingolipids.  相似文献   

2.
The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion.  相似文献   

3.
The urokinase-type plasminogen activator receptor (uPAR) serves as a receptor for urokinase plasminogen activator (uPA) and plays a role in invasion and migration of certain immune cells, including NK cells. Although uPAR is anchored to the plasma membrane via a glycosylphosphatidylinositol lipid moiety, we have previously shown that uPAR crosslinking results in MAP kinase signaling and increased integrin expression on the surface of the human NK cell line, YT. We report, herein, that the binding of uPA to uPAR also activates the MAP kinase signaling cascade. Furthermore, we show the physical association between uPAR and integrins on YT cells using cocapping and fluorescence microscopy. These results suggest that signaling initiated by either uPAR binding to uPA or by uPAR clustering may depend on the physical association of uPAR with integrins, a process that may be a prerequisite for NK cell accumulation within established tumor metastases during adoptive therapy.  相似文献   

4.
Vibrio vulnificus secretes a hemolysin/cytolysin (VVH) that induces cytolysis in target cells. A detergent resistant membrane domain (DRM) fraction of the cells after sucrose gradient centrifugation includes cholesterol-rich membrane microdomains which have been called "lipid rafts". It was reported that some pore-forming toxins require association with DRM and/or lipid rafts to exert their cytotoxicity. It has also been thought that cellular cholesterol is involved in VVH cytotoxicity because VVH cytotoxicity was inhibited by pre-incubation with cholesterol. However, both cellular localization and mode of action of VVH cytotoxicity remain unclear. In this study, we investigated the relationship between VVH localization on the cellular membrane and its cytotoxicity. Oligomers of VVH were detected from DRM fractions by sucrose gradient ultracentrifugation but all of these oligomers shifted from DRM fractions to non-DRM fractions after treatment with methyl-beta-cyclodextrin (MβCD), a cholesterol sequestering agent. On the other hand, immunofluorescence analysis showed that VVH did not co-localize with major lipid raft markers on cellular membrane of CHO cells. These data suggested that VVH localized at membrane regions which are relatively abundant in cholesterol but which are not identical with lipid rafts. To determine the linkage between localization and cytotoxicity of VVH, cytotoxicity was evaluated in MβCD-treated CHO cells. The cytotoxicity of VVH was not decreased by the MβCD treatment. In addition, the amount of VVH oligomer did not decrease in MβCD-treated CHO cells. Thus, we found that the amount of oligomer on cellular membrane is important for induction of cytotoxicity, whereas localization to lipid rafts on the cellular membrane was not essential to cytotoxicity.  相似文献   

5.
Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid‐rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar‐lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro‐angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid‐supported mobile bilayer lipid membranes with raft‐like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR‐GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1‐enriched biomimetic membranes, were validated by identifying a pro‐angiogenic activity of GM1‐enriched EPCs, based on GM1‐dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti‐angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar‐raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar‐raft partitioning of uPAR, as opposed to control and GM3‐challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.  相似文献   

6.

Background

The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1.

Methodology/Principal Findings

In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments.

Conclusions/Significance

These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.  相似文献   

7.
The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor β (PDGFR-β), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-β. Active PDGFR-β was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-β and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.  相似文献   

8.
Ono A  Waheed AA  Joshi A  Freed EO 《Journal of virology》2005,79(22):14131-14140
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.  相似文献   

9.
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.  相似文献   

10.
The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associated uPAR variant without ligand-binding properties. In extracts of U937 cells there are two uPAR variants which after complete deglycosylation have apparent molecular masses of 35,000 and 27,000. Analysis with monoclonal antibodies showed that these variants represented the intact uPAR and a two-domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its generation. Purified uPAR can be cleaved directly by uPA as well as by plasmin. The uPA-catalyzed cleavage does not require binding of the protease to the receptor through its epidermal growth factor-like receptor-binding domain, since low molecular weight uPA that lacks this domain also cleaves uPAR. This unusual reaction in which a specific binding protein is proteolytically inactivated by its own ligand may represent a regulatory step in the plasminogen activation cascade.  相似文献   

11.
Urokinase-type plasminogen activator receptor (uPAR) regulates pericellular proteolysis by binding the serine proteinase urokinase-type plasminogen activator (uPA) that promotes cell surface activating of plasminogen to plasmin. In addition, uPAR as a glycosylphosphatidylinositol (GPI)-anchored signaling receptor affects cell migration, differentiation, and proliferation. The aim of the present study was to monitor the occurrence and distribution pattern of uPAR in cells of the rat molar tooth germ. By means of immunocytochemistry moderate, uPAR immunoreactivity was detected in epithelial cells of the enamel organ and in ameloblasts and odontoblasts. RT-PCR and Western blotting experiments demonstrated the expression of uPAR in phorbol 12-myristate 13-acetate (PMA)-stimulated dental epithelial cells (HAT-7 cells). A substantial part of uPAR was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. However, co-immunoprecipitation experiments showed that uPAR and caveolin-1 do not associate with each other directly. Cell stimulation experiments with PMA indicated that protein kinase C (PKC)-mediated signaling pathways contribute to the expression of uPAR in cells of the enamel organ. The localization of uPAR in membrane rafts provides a basis for further investigations on the role of uPAR-mediated signaling cascades in ameloblasts.  相似文献   

12.
Within the cell membrane glycosphingolipids and cholesterol cluster together in distinct domains or lipid rafts, along with glycosyl-phosphatidylinositol (GPI)-anchored proteins in the outer leaflet and acylated proteins in the inner leaflet of the bilayer. These lipid rafts are characterized by insolubility in detergents such as Triton X-100 at 4 degrees C. Studies on model membrane systems have shown that the clustering of glycosphingolipids and GPI-anchored proteins in lipid rafts is an intrinsic property of the acyl chains of these membrane components, and that detergent extraction does not artefactually induce clustering. Cholesterol is not required for clustering in model membranes but does enhance this process. Single particle tracking, chemical cross-linking, fluorescence resonance energy transfer and immunofluorescence microscopy have been used to directly visualize lipid rafts in membranes. The sizes of the rafts observed in these studies range from 70-370 nm, and depletion of cellular cholesterol levels disrupts the rafts. Caveolae, flask-shaped invaginations of the plasma membrane, that contain the coat protein caveolin, are also enriched in cholesterol and glycosphingolipids. Although caveolae are also insoluble in Triton X-100, more selective isolation procedures indicate that caveolae do not equate with detergent-insoluble lipid rafts. Numerous proteins involved in cell signalling have been identified in caveolae, suggesting that these structures may function as signal transduction centres. Depletion of membrane cholesterol with cholesterol binding drugs or by blocking cellular cholesterol biosynthesis disrupts the formation and function of both lipid rafts and caveolae, indicating that these membrane domains are involved in a range of biological processes.  相似文献   

13.
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) participate in matrix degradation and cell migration by focusing proteolysis and functioning as a signaling ligand/receptor complex. uPAR, anchored by a lipid moiety in the membrane, is thought to require a transmembrane adapter to transduce signals into the cytoplasm. To study uPAR signaling, we transfected the prostate carcinoma cell line LNCaP, which does not express endogenous uPA or uPAR, with a uPAR encoding cDNA, resulting in high-level surface expression. We studied migration of these cells on fibronectin, which is mediated by the integrin alpha5beta1. Ligation of uPAR with uPA or its amino-terminal fragment enhanced haptotactic migration to fibronectin. In cells on fibronectin, but not on poly-l-lysine, ligation of uPAR also resulted in tyrosine phosphorylation of several proteins, including two proteins involved in integrin signaling, focal adhesion kinase and the crk-associated substrate p130(Cas). Furthermore, after uPAR ligation, uPAR was co-immunoprecipitated with beta1 integrins from the detergent-insoluble fraction of cell lysates. Thus, our data suggest that uPAR occupancy results in an interaction between uPAR and integrins and a potentiation of integrin-mediated signaling, which leads to enhanced cell migration.  相似文献   

14.
Accumulating evidence suggests that some heat shock proteins (Hsps), in particular the 72-kDa inducible Hsp70, associate to the cell membrane and might be secreted through an unknown mechanism to exert important functions in the immune response and signal transduction. We speculated that specialized structures named lipid rafts, known as important platforms for the delivery of proteins to the cell membrane, might be involved in the unknown mechanism ensuring membrane association and secretion of Hsp70. Lipid rafts are sphingolipid-cholesterol-rich structures that have been mainly characterized in polarized epithelial cells and can be isolated as detergent-resistant microdomains (DRMs). Analysis of soluble and DRM fractions prepared from unstressed Caco-2 epithelial cells revealed that Hsp70, and to a lesser extent calnexin, were present in DRM fractions. Increased expression of Hsps, through heat shock or by using drugs acting on protein trafficking or intracellular calcium level, induced an efficient translocation to DRM. We also found that Hsp70 was released by epithelial Caco-2 cells, and this release dramatically increased after heat shock. Drugs known to block the classical secretory pathway were unable to reduce Hsp70 release. By contrast, release of the protein was affected by the raft-disrupting drug methyl-beta-cyclodextrin. Our data suggest that lipid rafts are part of a mechanism ensuring the correct functions of Hsps and provide a rational explanation for the observed membrane association and release of Hsp70.  相似文献   

15.
We screened sera from patients with various neurological disorders for the presence of anti-neutral glycosphingolipids antibodies and only found them in sera from relapsing polychondritis with limbic encephalitis patients. Neutral glycosphingolipids are resident in membrane lipid rafts where high affinity nerve growth factor (NGF) receptor, Trk is co-localized. Therefore, we examined whether these antibodies influence the action of NGF in NGF-responsive cells. The results strongly suggest that these antibodies enhance NGF-induced Trk autophosphorylation and neurite outgrowth as well as neurofilament M expression. These data strongly indicate that these anti-neutral glycosphingolipids antibodies have a functional impact on NGF-Trk-mediated intracellular signal transduction pathway.  相似文献   

16.
Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.  相似文献   

17.
Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.  相似文献   

18.
A variety of extracellular ligands and pathogens interact with raft domains in the plasma membrane of eukaryotic cells. In this study, we examined the role of lipid rafts and raft-associated glycosylphosphatidylinositol (GPI)-anchored proteins in the process by which Helicobacter pylori vacuolating toxin (VacA) intoxicates cells. We first investigated whether GPI-anchored proteins are required for VacA toxicity by analyzing wild-type Chinese hamster ovary (CHO) cells and CHO-LA1 mutant cells that are defective in production of GPI-anchored proteins. Whereas wild-type and mutant cells differed markedly in susceptibility to aerolysin (a bacterial toxin that binds to GPI-anchored proteins), they were equally susceptible to VacA. We next determined whether VacA physically associates with lipid rafts. CHO or HeLa cells were incubated with VacA, and Triton-insoluble membranes then were separated by sucrose density gradient centrifugation. Immunoblot analysis revealed that a substantial proportion of cell-associated toxin was associated with detergent-resistant membranes (DRMs). DRM association required acid activation of the purified toxin prior to contact with cells, and acid activation also was required for VacA cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (a cholesterol-depleting agent) did not inhibit VacA-induced depolarization of the plasma membrane, but interfered with the internalization or intracellular localization of VacA and inhibited the capacity of the toxin to induce cell vacuolation. Treatment of cells with nystatin also inhibited VacA-induced cell vacuolation. These data indicate that VacA associates with lipid raft microdomains in the absence of GPI-anchored proteins and suggest that association of the toxin with lipid rafts is important for VacA cytotoxicity.  相似文献   

19.
Montuori N  Salzano S  Rossi G  Ragno P 《FEBS letters》2000,476(3):166-170
The expression of the receptor for the urokinase-type plasminogen activator (uPAR) can be regulated by several hormones, cytokines, tumor promoters, etc. Recently, it has been reported that uPAR is capable of transducing signals, even though it is lacking a transmembrane domain and a cytoplasmatic tail. We now report that uPAR cell surface expression can be positively regulated by its ligand, uPA, in thyroid cells. The effect of uPA is independent of its proteolytic activity, since inactivated uPA or its aminoterminal fragment have the same effects of the active enzyme. The increase of uPAR on the cell surface correlates with an increase of specific uPAR mRNA. Finally, uPA up-regulates uPAR expression also in other cell lines of different type and origin, thus suggesting that the regulatory role of uPA on uPAR expression is not restricted to thyroid cells, but it occurs in different tissues, both normal and tumoral.  相似文献   

20.
Numerous studies have linked the production of increased levels of urokinase type plasminogen activator (uPA) with the malignant phenotype. It has also been shown that a specific cell surface receptor can bind uPA through a domain distinct and distant from the proteolytic domain. In an in vivo model of invasion, consisting of experimentally modified chorioallantoic membrane (CAM) of a chick embryo, only cells that concurrently expressed both uPA and a receptor for uPA, and in which the receptor was saturated with uPA, were efficient in invasion. To test whether uPA produced by one cell can, in a paracrine fashion, affect the invasive capacity of a receptor-expressing cell, we transfected LB6 mouse cells with human uPA (LB6[uPA]), or human uPA-receptor cDNA (LB6[uPAR]). LB6(uPA) cells released into the medium 1-2 Ploug units of human uPA per 10(6) cells in 24 h. The LB6(uPAR) cells expressed on their surface approximately 12,000 high affinity (Kd 1.7 x 10(-10) M uPA binding sites per cell. Unlabeled LB6(uPA) and 125-IUdR-labeled LB6(uPAR) cells were coinoculated onto experimentally wounded and resealed CAMs and their invasion was compared to that of homologous mixtures of labeled and unlabeled LB6(uPAR) or LB6(uPA) cells. Concurrent presence of both cell types in the CAMs resulted in a 1.8-fold increase of invasion of the uPA-receptor expressing cells. A four-fold stimulation of invasion was observed when cells were cocultured in vitro, prior to in vivo inoculation. Enhancement of invasion was prevented in both sets of experiments by treatment with specific antihuman uPA antibodies, indicating that uPA was the main mediator of the invasion-enhancing, paracrine effect on the receptor-expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号