首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Defining the at‐sea foraging movements of seabirds is fundamental to understanding their ecology and can also be important in assessing the potential impact of marine developments such as offshore wind farms (OWFs). Surveys of predefined areas using aerial or boat‐based transect surveys may not allow adequate assessment of the relative importance of different areas to birds. Individual‐based satellite or radio‐telemetry can be effective in identifying foraging ranges and preferred areas, but may not be suitable for some species. We developed a method to determine the foraging movements of breeding terns (Sterna spp.) by visually tracking individuals using a rigid‐hulled inflatable boat (RHIB). Sandwich Terns (S. sandvicensis), Common Terns (S. hirundo), and Arctic Terns (S. paradisaea) were tracked from colonies in Norfolk and Anglesey, United Kingdom, from 2006 to 2008. The proportion of complete (from and to colony) trips varied from 29–60% among species, years, and colonies. Individual Sandwich Terns were tracked for periods up to 126 min over distances up to 72 km and as far as 54 km from the breeding colony, further than Arctic (up to 57 km and 29 km from the colony) and Common (to 29 km and <9 km from the colony) terns. Mean values were much smaller. Multivariate modeling of Sandwich Tern foraging trips indicated that flight speeds >50 km/hr coupled with greater distances from shore (>25 km) significantly reduced the likelihood of tracking a bird for an entire foraging trip. Use of different boats that differ in speed and performance may alleviate such issues. Visual tracking allowed us to collect data on foraging behavior, flight height, and prey capture rates, and also permitted comparisons between species. Our results indicate that visual tracking may be an effective means of determining the foraging movements and at‐sea behavior of a variety of short‐ranging, day‐active seabirds.  相似文献   

2.
M. J. Goodacre 《Bird Study》2013,60(2):111-113
Capsule Large‐scale intensification of agricultural management during the past 50 years has resulted in a reduction of invertebrate abundance and higher and denser ground vegetation. Food availability for insectivorous birds foraging on the ground has been negatively affected, but the interactions between birds and their food availability are complex and often species‐specific. Populations of Wrynecks Jynx torquilla are declining all over Europe, possibly because of reduced accessibility to their main prey, ground‐dwelling ants, due to higher and denser ground vegetation. However, it is not clear which ground vegetation structures are tolerated by foraging Wrynecks and which habitats are preferred.

Aims To identify the optimal ground vegetation structure and the main habitat types in which Wrynecks search for food.

Method We radiotracked seven Wrynecks in high‐intensity farmland in Switzerland to study foraging habitat use during the reproduction season. Several habitat variables were mapped at each foraging location and compared with locations selected randomly within individual home ranges.

Results Wrynecks preferentially foraged at places with ≥50% bare ground. Vegetation height was not important. Older fruit tree plantations and fallow land were the preferred foraging habitats.

Conclusion Conservation measures should concentrate on preserving semi‐open agricultural landscape matrices with loose ground vegetation cover to provide suitable foraging conditions. This can be achieved even in intensively managed farmland as illustrated in this study.  相似文献   

3.
The introduction of artificial nighttime lighting due to human settlements and transport networks is increasingly altering the timing, intensity, and spectra of natural light regimes worldwide. Much of the research on the impacts of nighttime light pollution on organisms has focused on animal species. Little is known about the impacts of daylength extension due to outdoor lighting technologies on wild plant communities, despite the fact that plant growth and development are under photoperiodic control. In a five‐year field experiment, artificial ecosystems (“mesocosms”) of grassland communities both alone or in combination with invertebrate herbivores and predators were exposed to light treatments that simulated street lighting technologies (low‐pressure sodium, and light‐emitting diode [LED]‐based white lighting), at ground‐level illuminance. Most of the plant species in the mesocosms did not exhibit changes in biomass accumulation after 5 years of exposure to the light treatments. However, the white LED treatment had a significant negative effect on biomass production in the herbaceous species Lotus pedunculatus. Likewise, the interaction between the white LED treatment and the presence of herbivores significantly reduced the mean shoot/root ratio of the grass species Holcus lanatus. Artificial nighttime lighting had no effect on the foliar carbon or nitrogen in most of the grassland species. Nevertheless, the white LED treatment significantly increased the leaf nitrogen content in Lotus corniculatus in the presence of herbivores. Long‐term exposure to artificial light at night had no general effects on plant biomass responses in experimental grassland communities. However, species‐specific and negative effects of cool white LED lighting at ground‐level illuminance on biomass production and allocation in mixed plant communities are suggested by our findings. Further studies on the impacts of light pollution on biomass accumulation in plant communities are required as these effects could be mediated by different factors, including herbivory, competition, and soil nutrient availability.  相似文献   

4.
Urbanization is occurring around the globe, changing environmental conditions and influencing biodiversity and ecosystem functions. Urban domestic gardens represent a small‐grained mosaic of diverse habitats for numerous species. The challenging conditions in urban gardens support species possessing certain traits, and exclude other species. Functional diversity is therefore often altered in urban gardens. By using a multi‐taxa approach focused on native grassland plants and ground‐dwelling invertebrates with overall low mobility (snails, slugs, spiders, millipedes, woodlice, ants, rove beetles), we examined the effects of urbanization (distance to city center, percentage of sealed area) and garden characteristics on functional dispersion, functional evenness, habitat preferences and body size. We conducted a field survey in 35 domestic gardens along a rural–urban gradient in Basel, Switzerland. The various groups showed different responses to urbanization. Functional dispersion of native grassland plants decreased with increasing distance to the city center, while functional dispersion of ants decreased with increasing percentage of sealed area. Functional evenness of ants increased with increasing distance to the city center and that of rove beetles decreased with increasing percentage of sealed area. Contrary to our expectation, in rove beetles, the proportion of generalists decreased with increasing percentage of sealed area in the surroundings, and the proportion of species preferring dry conditions increased with increasing distance to the city center. Body size of species increased with distance to city center for slugs, spiders, millipedes, ants, and rove beetles. Local garden characteristics had few effects on functional diversity and habitat preferences of the groups examined. Our study supports the importance of using multi‐taxa approaches when examining effects of environmental change on biodiversity. Considering only a single group may result in misleading findings for overall biodiversity. The ground‐dwelling invertebrates investigated may be affected in different ways from the more often‐studied flying pollinators or birds.  相似文献   

5.
Abstract In an early spar-stage stand of Eucalyptus regnans at Beenak, Victoria, foraging by lyrebirds in bare floor areas on steep slopes results in a complex microtopography of excavations, accumulations and terracettes. About 200 t ha?1 of litter and top soil may be displaced an average of 70 cm downhill per year. Magnetic ferruginous pisolite was used as a marker to monitor progressive soil movement over 3 years. Very little disturbance occurred in areas of dense ground fern, but in bare areas the whole forest floor may be turned over every 20 months. In the site studied, foraging activity by lyrebirds varied seasonally and topographically. Disturbance by other biotic agents was minimal. The mean depth of soil cultivation was about 10 cm and litter was frequently buried or mixed intimately with soil. Since buried leaf litter decays more quickly than that on the surface, lyrebird foraging is likely to increase the rate of nutrient cycling. The small, steep clifflets left at the uphill limits of each scratch microsite provide litter-free niches for the establishment of tree fern prothalli and shade-tolerant herbs. All stages in the growth of the rough tree fern, Cyathea australis, were present in bare floor areas, but in dense ground fern patches, young stages were confined to rotten logs and upturned root balls. Since dense tree fern development tends to diminish the cover of dense ground fern, lyrebird foraging activity may maintain an accessible food resource which would otherwise diminish with increased ground fern cover in these forests in the course of secondary succession after fire.  相似文献   

6.
Ecosystem engineers that modify the soil and ground‐layer properties exert a strong influence on vegetation communities in ecosystems worldwide. Understanding the interactions between animal engineers and vegetation is challenging when in the presence of large herbivores, as many vegetation communities are simultaneously affected by both engineering and herbivory. The superb lyrebird Menura novaehollandiae, an ecosystem engineer in wet forests of south‐eastern Australia, extensively modifies litter and soil on the forest floor. The aim of this study was to disentangle the impacts of engineering by lyrebirds and herbivory by large mammals on the composition and structure of ground‐layer vegetation. We carried out a 2‐year, manipulative exclusion experiment in the Central Highlands of Victoria, Australia. We compared three treatments: fenced plots with simulated lyrebird foraging; fenced plots excluding herbivores and lyrebirds; and open controls. This design allowed assessment of the relative impacts of engineering and herbivory on germination rates, seedling density, vegetation cover and structure, and community composition. Engineering by lyrebirds enhanced the germination of seeds in the litter layer. After 2 years, more than double the number of germinants were present in “engineered” than “non‐engineered” plots. Engineering did not affect the density of seedlings, but herbivory had strong detrimental effects. Herbivory also reduced the floristic richness and structural complexity (<0.5 m) of forest vegetation, including the cover of herbs. Neither process altered the floristic composition of the vegetation within the 2‐year study period. Ecosystem engineering by lyrebirds and herbivory by large mammals both influence the structure of forest‐floor vegetation. The twofold increase in seeds stimulated to germinate by engineering may contribute to the evolutionary adaptation of plants by allowing greater phenotypic expression and selection than would otherwise occur. Over long timescales, engineering and herbivory likely combine to maintain a more‐open forest floor conducive to ongoing ecosystem engineering by lyrebirds.  相似文献   

7.
In July 2008 we outfitted reproductively active adult arctic foxes with satellite tracking collars on Bylot Island, Nunavut, Canada and recorded their movements over a complete annual cycle. We present the tracking data from two individuals, one female and one male, who traveled extensively from February to July 2009, covering minimum distances of 4,599 and 2,193 km, respectively. We recorded high and sustained travel rates on both land and sea ice that reached 90 km/day for the female and 88 km/day for the male. Our data confirm that arctic foxes can move extensively and demonstrate sustained travel rates that are 1.5 times those previously measured for the species. Our study is the first presenting detailed year-round satellite tracking of adult arctic foxes and has implications for our understanding of navigational abilities, foraging ecology, trophic interactions with lemming populations, and genetic population structure of arctic foxes.  相似文献   

8.
Crop‐foraging by animals is a leading cause of human–wildlife “conflict” globally, affecting farmers and resulting in the death of many animals in retaliation, including primates. Despite significant research into crop‐foraging by primates, relatively little is understood about the behavior and movements of primates in and around crop fields, largely due to the limitations of traditional observational methods. Crop‐foraging by primates in large‐scale agriculture has also received little attention. We used GPS and accelerometer bio‐loggers, along with environmental data, to gain an understanding of the spatial and temporal patterns of activity for a female in a crop‐foraging baboon group in and around commercial farms in South Africa over one year. Crop fields were avoided for most of the year, suggesting that fields are perceived as a high‐risk habitat. When field visits did occur, this was generally when plant primary productivity was low, suggesting that crops were a “fallback food”. All recorded field visits were at or before 15:00. Activity was significantly higher in crop fields than in the landscape in general, evidence that crop‐foraging is an energetically costly strategy and that fields are perceived as a risky habitat. In contrast, activity was significantly lower within 100 m of the field edge than in the rest of the landscape, suggesting that baboons wait near the field edge to assess risks before crop‐foraging. Together, this understanding of the spatiotemporal dynamics of crop‐foraging can help to inform crop protection strategies and reduce conflict between humans and baboons in South Africa.  相似文献   

9.
  1. The platypus is a cryptic mammal that inhabits freshwater streams and rivers of eastern Australia. Tracking the movements of wild platypuses has been notoriously difficult due to the animals' morphology and methodological limitations. Knowledge of fine‐scale movements and interactions among individuals remain particularly poorly understood, as do responses to changes in hydrology.
  2. We tracked movements of 15 platypuses (six females, nine males) downstream of the Jindabyne Dam on the Snowy River, using externally attached acoustic transmitters (September–November 2017), to assess spatio‐temporal activity patterns among individuals and changes in movement and activity before and after an environmental flushing flow. As the study took place during the breeding season, we expected to observe overlap in area of activity among males and females, but not among males due to increased territoriality during these months. We also anticipated that a large flow event would impact their activity and foraging behaviour, possibly displacing platypuses downstream.
  3. Overlaps in area of activity and temporal co‐occurrence within a pool varied among individuals, with two resident males exhibiting some spatial overlap of activity and varying temporal co‐occurrence, despite tracking during the breeding season. All six tracked females were captured in the same pool and appeared to be residents, possibly highlighting preferences for certain habitats during the breeding months.
  4. We found no evidence that the movements of adult platypuses were affected by an environmental flushing flow, with no significant changes to area of activity, number of detections, or daily range of movements. However, foraging duration increased in the week after the flow, possibly associated with increased prey availability.
  5. These findings suggest that territoriality between males during and after the breeding season may depend on platypus density and resource availability and that pools with high resource availability may support several breeding females.
  相似文献   

10.
The foraging and nesting performance of bees can provide important information on bee health and is of interest for risk and impact assessment of environmental stressors. While radiofrequency identification (RFID) technology is an efficient tool increasingly used for the collection of behavioral data in social bee species such as honeybees, behavioral studies on solitary bees still largely depend on direct observations, which is very time‐consuming. Here, we present a novel automated methodological approach of individually and simultaneously tracking and analyzing foraging and nesting behavior of numerous cavity‐nesting solitary bees. The approach consists of monitoring nesting units by video recording and automated analysis of videos by machine learning‐based software. This Bee Tracker software consists of four trained deep learning networks to detect bees that enter or leave their nest and to recognize individual IDs on the bees’ thorax and the IDs of their nests according to their positions in the nesting unit. The software is able to identify each nest of each individual nesting bee, which permits to measure individual‐based measures of reproductive success. Moreover, the software quantifies the number of cavities a female enters until it finds its nest as a proxy of nest recognition, and it provides information on the number and duration of foraging trips. By training the software on 8 videos recording 24 nesting females per video, the software achieved a precision of 96% correct measurements of these parameters. The software could be adapted to various experimental setups by training it according to a set of videos. The presented method allows to efficiently collect large amounts of data on cavity‐nesting solitary bee species and represents a promising new tool for the monitoring and assessment of behavior and reproductive success under laboratory, semi‐field, and field conditions.  相似文献   

11.
The fragility and sensitivity to climate change of alpine ecosystems make it difficult to maintain the stability of their plant communities. Thus, it is important to determine which plant propagules are stored in the soils in order to understand community recruitment potential, especially under different environmental conditions. Based on a soil seed germination and seedling cultivation experiment, we aimed to identify differences in the soil seed attributes between three typical habitat types in the alpine subnival ecosystems of the Himalaya‐Hengduan Mountains and hence to predict the community recruitment potential of each of these different communities. We found that the seed assemblages in the soils differed between habitats. The most abundant taxa were from the genera Saxifraga, Kobresia, Arenaria, Polygonum, Draba, and Viola, while the taxa with lowest abundance were Apiaceae, Campanulaceae, Circaea, Crassulaceae, and Gentiana. Different habitats exhibited variable soil seed richness, diversity, and density. However, the patterns differed between study sites. Specifically, at Baima (BM) and Shika (SK) snow mountains, soil seed richness, diversity, and density were generally highest in grassland, followed by rock bed and bare ground. In contrast, on Jiaozi (JZ) snow mountain, the rock bed supported the highest soil seed richness and density, followed by grassland and bare ground. These results suggest that the attributes of habitats and communities can both affect the accumulation of soil seeds. Bare ground supports the lowest seed diversity and density but also harbors the most empty niches. We, therefore, predict that, once the thermal conditions become suitable as a result of global warming, this habitat has the potential to see greater changes than grassland and rock bed in terms of community recruitment.  相似文献   

12.
  1. Animal movement studies are conducted to monitor ecosystem health, understand ecological dynamics, and address management and conservation questions. In marine environments, traditional sampling and monitoring methods to measure animal movement are invasive, labor intensive, costly, and limited in the number of individuals that can be feasibly tracked. Automated detection and tracking of small‐scale movements of many animals through cameras are possible but are largely untested in field conditions, hampering applications to ecological questions.
  2. Here, we aimed to test the ability of an automated object detection and object tracking pipeline to track small‐scale movement of many individuals in videos. We applied the pipeline to track fish movement in the field and characterize movement behavior. We automated the detection of a common fisheries species (yellowfin bream, Acanthopagrus australis) along a known movement passageway from underwater videos. We then tracked fish movement with three types of tracking algorithms (MOSSE, Seq‐NMS, and SiamMask) and evaluated their accuracy at characterizing movement.
  3. We successfully detected yellowfin bream in a multispecies assemblage (F1 score =91%). At least 120 of the 169 individual bream present in videos were correctly identified and tracked. The accuracies among the three tracking architectures varied, with MOSSE and SiamMask achieving an accuracy of 78% and Seq‐NMS 84%.
  4. By employing this integrated object detection and tracking pipeline, we demonstrated a noninvasive and reliable approach to studying fish behavior by tracking their movement under field conditions. These cost‐effective technologies provide a means for future studies to scale‐up the analysis of movement across many visual monitoring systems.
  相似文献   

13.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

14.
The control of hand equilibrium trajectories in multi-joint arm movements   总被引:10,自引:0,他引:10  
  相似文献   

15.
Pollinators and the pollination services they provide are critical for seed set and self‐sustainability of most flowering plants. Despite this, pollinators are rarely assessed in restored plant communities, where their services are largely assumed to re‐establish. Bird–pollinator richness, foraging, and interaction behavior were compared between natural and restored Banksia woodland sites in Western Australia to assess their re‐establishment in restored sites. These parameters were measured for natural communities of varying size and degree of fragmentation, and restored plant communities of high and low complexity for three years, in the summer and winter flowering of Banksia attenuata and B. menziesii, respectively. Bird visitor communities varied in composition, richness, foraging movement distances, and aggression among sites. Bird richness and abundance were lowest in fragmented remnants. Differences in the composition were associated with the size and degree of fragmentation in natural sites, but this did not differ between seasons. Restored sites and their adjacent natural sites had similar species composition, suggesting proximity supports pollinator re‐establishment. Pollinator foraging movements were influenced by the territorial behavior of different species. Using a network analysis approach, we found foraging behavior varied, with more frequent aggressive chases observed in restored sites, resulting in more movements out of the survey areas, than observed in natural sites. Aggressors were larger‐bodied Western Wattlebirds (Anthochaera chrysoptera) and New Holland Honeyeaters (Phylidonyris novaehollandiae) that dominated nectar resources, particularly in winter. Restored sites had re‐established pollination services, albeit with clear differences, as the degree of variability in the composition and behavior of bird pollinators for Banksias in the natural sites created a broad completion target against which restored sites were assessed. The abundance, diversity, and behavior of pollinator services to remnant and restored Banksia woodland sites were impacted by the size and degree of fragmentation, which in turn influenced bird–pollinator composition, and were further influenced by seasonal changes between summer and winter. Consideration of the spatial and temporal landscape context of restored sites, along with plant community diversity, is needed to ensure the maintenance of the effective movement of pollinators between natural remnant woodlands and restored sites.  相似文献   

16.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

17.
Quarry exploitation and restoration practices are expected to have overarching and contrasting impacts on animal communities. Although many studies describe these impacts, they generally overlook the effects on population dynamics and individual movements. We assessed the impacts of quarry exploitation and restoration activity on population dynamics, individual movement, and habitat use of a sand‐dwelling specialist beetle (Scarites cyclops). The study was performed on three plots: one adjacent to the margin of quarry exploitation, another subjected to restoration practices, and a control plot with no disturbance. A capture‐mark‐recapture approach was undertaken to estimate population parameters, movement, and habitat use. In the exploitation plot S. cyclops exhibited lower probability of recapture and lower apparent survival, as well as many movements fleeing away from quarry limits. Habitat suitability modeling showed that the exploitation plot provided better habitat conditions for the species than the restoration plot. It exhibited higher bare ground cover with scattered clumps of vegetation and higher proportions of fine sand (<0.4 mm). In the restoration plot, S. cyclops population showed a lower abundance, with a higher rate of recaptures, and a more limited dispersal ability of the individuals. There is an apparent early stage of colonization by S. cyclops in the restoration plot, but movements may already be hampered by unsuitable habitat restoration (higher herbaceous cover and different soil texture). We suggest preserving suitable habitat patches in the vicinity of the impacted areas and providing dispersal routes. Beyond vegetation, soil texture must be considered to allow local animal communities to establish in restored areas.  相似文献   

18.
Ecosystems are interconnected by energy fluxes that provide resources for the inhabiting organisms along the transition zone. Especially where in situ resources are scarce, ecosystems can become highly dependent on external resources. The dependency on external input becomes less pronounced in systems with elevated in situ production, where only consumer species close to the site of external input remain subsidized, whereas species distant to the input site rely on the in situ production of the ecosystem. It is largely unclear though if this pattern is consistent over different consumer species and trophic levels in one ecosystem, and whether consumer species that occur both proximate to and at a distance from the input site differ in their dependency on external resource inputs between sites. Using stable isotope analysis, we investigated the dependency on external marine input for common ground‐associated consumer taxa on small tropical islands with high in situ production. We show that marine input is only relevant for strict beach‐dwelling taxa, while the terrestrial vegetation is the main carbon source for inland‐dwelling taxa. Consumer species that occurred both close (beach) and distant (inland) to the site of marine input showed similar proportions of marine input in their diets. This supports earlier findings that the relevance of external resources becomes limited to species close to the input site in systems with sufficient in situ production. However, it also indicates that the relevance of external input is also species‐dependent, as consumers occurring close and distant to the input site depended equally strong or weak on marine input.  相似文献   

19.
Two female loggerhead turtles (Caretta caretta) were tracked, following nesting at Alagadi Beach (35°33′N, 33°47′E), Northern Cyprus, eastern Mediterranean for 60 and 82 days, respectively. The two individuals showed marked differences in their behaviour. Individual A was tracked to Syrian coastal waters, whereas individual B travelled around the coast of Northern Cyprus to a foraging site in the waters off the east coast of Northern Cyprus. Submergence durations varied markedly during different phases of the migration, suggesting coastal foraging/resting at certain stages en route with sustained directed travelling movements during initial coastal movements and open ocean crossing. Both turtles showed fidelity to foraging grounds for the duration of transmissions (Turtle A: 36 days; Turtle B: 58 days). In both cases, locations were centred in inshore waters although the two individuals exhibited quite different submergence patterns. Individual A carried out very short dives of typical duration <10 min, whereas Individual B carried out longer dives with typical duration >20 min. Diel differences in submergence duration at the foraging grounds suggested longer dives at night/early morning for both turtles. For Turtle A, there was a general reduction in submergence duration as the period of residence increased; a pattern that may have been related to increasing temperature experienced. The total distance travelled by the two turtles (320 and 227 km) was relatively short when compared to satellite tracking studies of conspecifics following nesting in South Africa and USA and tagging studies of nesting loggerhead turtles in Greece and Australia. It is hypothesized that short migratory distance may be correlated with both the small body size and the relatively high frequency of remigration in this population.  相似文献   

20.
Using a fully coupled climate–terrestrial ecosystem model, we demonstrate explicitly that an initial perturbation on vegetation induces not only a direct positive vegetation feedback, but also a significant indirect vegetation–soil moisture feedback. The indirect feedback is generated through either fractional cover change or soil moisture depletion. Both indirect feedback mechanisms are triggered by a vegetation perturbation, but involve subsequent effects of soil moisture and evaporation, indirectly. An increase in vegetation tends to reduce bare‐ground evaporation through either the area reduction in bare ground or the depletion of soil moisture; the reduced evaporation may then counter the initial plant transpiration, favoring a negative net vegetation feedback. Furthermore, grasses are more effective in inducing the indirect vegetation–soil feedbacks, because of their limited plant evapotranspiration and shallower roots that tend to change surface soil moisture, and, in turn, evaporation, effectively. In comparison, trees favor a direct positive vegetation feedback due to their strong plant transpiration on subsurface soil moisture as well as a lower albedo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号